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ABSTRACT

We present an integrated, two-step framework for high-resolution urban seismic risk assessment and similarity-
based damage prediction developed under the UDENE1 initiative. The methodology couples an Earthquake
Hazard Assessment, producing rasterized peak ground acceleration, spectral acceleration and intensity fields
at 150 arcsec grid resolution using region specific Ground Motion Prediction Equation (GMPE), Boore, D.
M., and Atkinson, G. M.2 augmented by local soil information, with an Earthquake Loss Assessment that
converts hazard outputs into some variety levels of building damages and economic loss estimates using a geo-
cellular inventory, following Risk-UE taxonomy,3 and the Lagomarsino–Giovinazzi4 vulnerability relationships.
To generalize predictions across contexts we develop a two-phase similarity and prediction algorithm. Phase
1 computes weighted similarity scores across Damage Loss (D3 to D5), Economic Loss, and Ground Motion
using distributional and spatial measures and SSIM5 on PGA/intensity images; weights are tunable and an
optional feature importance term may be included. Phase 2 trains regression models (Random Forest,6 Gradient
Boosting7) on building and region-specific attributes drawn from Phase-1 clusters to predict damage classes and
economic loss. Tested on 16 European–Mediterranean cities, the framework yields low mean percentage errors on
held-out tests. Comprehensive sensitivity and interpretability analyses identify spatial dependency along active
fault segments and reveal key vulnerability drivers. We discuss policy implications, including building-code
effectiveness and an “inverse” planning scenario in which persistent high damage would motivate relocation or
horizontal urban development, and demonstrate how this explainable, data-driven toolkit can support resilient
urban planning and emergency preparedness.

Keywords: Urban seismic risk assessment, Earthquake loss prediction, Similarity-based region analysis, High-
rise vulnerability

1. INTRODUCTION

Urban seismic risk poses a persistent and evolving challenge for contemporary cities. The combination of rapid
urbanization, densification of city centers, and the growing interdependence of infrastructure systems has in-
creased the potential for earthquakes — even of moderate magnitude — to produce outsized human, economic,
and systemic impacts. Classical approaches to urban seismic risk emphasize the need to couple physical hazard
characterization with an understanding of the built environment’s vulnerability and the population’s expo-
sure; they also underscore that meaningful loss estimates require integration across disciplines and scales, from
ground-motion physics to socio-economic exposure and post-event service functionality.8–10 These foundational
perspectives continue to guide practitioners and researchers, yet the rapid expansion of available data and com-
putational methods creates an opportunity to rethink how hazard realism, vulnerability modeling, and prediction
can be combined to support planning and policy in a more transferable and interpretable way.

Over the last decade, machine learning (ML) and deep learning (DL) techniques have emerged as powerful
complements to traditional seismology and earthquake engineering. By drawing patterns from heterogeneous
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data sources—seismic waveforms, ShakeMap-style11 intensity rasters, building inventories, and socio-economic
indicators—ML approaches have improved earthquake detection, phase picking, damage classification, fragility
estimation, and rapid loss forecasting.12,13 These methods bring clear advantages in capturing complex, non-
linear relationships, enabling rapid post-event screening, and allowing for scalable ensemble approaches. At the
same time, important caveats arise in their application: ML models are sensitive to data quality, can inherit
biases from training sets, and often require explicit efforts to ensure interpretability and domain consistency.14

Consequently, there is growing consensus that ML should not supplant mechanistic understanding but rather be
integrated with physically grounded models to provide both predictive power and engineering interpretability.

A substantial body of recent work demonstrates how ML can augment or refine traditional vulnerability and
loss-estimation frameworks. Tree-based methods, particularly Random Forest6 and gradient-boosted ensembles,7

have repeatedly been shown to perform well for building damage classification and regional damage mapping
when combined with shaking intensity and a handful of structural features.15–18 Machine-learning-driven fragility
estimation has been shown to produce probabilistic vulnerability curves for reinforced concrete structures that
better capture empirical variability than some traditional formulations.19 At the economic scale, interpretable
ensemble and AutoML frameworks have been developed to predict post-earthquake economic losses and casualty
rates, using multi-source features and explanation tools such as SHAP20 to make model outputs actionable for
decision-makers.21,22 These studies collectively illustrate that, with careful feature selection and interpretability
measures, ML can substantially improve the speed and often the accuracy of damage and loss estimation. Despite
this progress, an important tension remains between hazard realism and ML-driven prediction. Many operational
pipelines either emphasize detailed, physics-informed ground motion modeling while relying on relatively simple
vulnerability/loss translation rules, or they focus on ML-based predictive models that depend on coarse or
inconsistent hazard inputs and single-city training data. This separation constrains both interpretability and
the capacity to generalize across geographies. The problem is not merely methodological: for urban planners
and policy-makers to use predictive tools, outputs must be traceable to physically meaningful inputs (e.g., how
local soil conditions modify shaking) and standardized taxonomies (e.g., Risk-UE building classes) so that results
can feed into regulatory and land-use decisions. Prior efforts have therefore advocated for hybrid frameworks
that preserve engineering grounding while leveraging ML’s capacity to synthesize diverse datasets.23 Another
gap lies in generalizing and transferring predictive models across cities and scenarios. Planners often need to
know whether a city or district has historical or simulated analogues whose responses can guide model transfer
or scenario-based policy evaluation. Although transfer learning and regional ML show promise, most are event-
specific or single-city and seldom employ a tunable similarity metric that jointly captures damage, economic loss,
and spatial ground-motion patterns.

Motivated by these gaps and by planning questions in dense European–Mediterranean cities, we developed an
integrated two-step framework that couples high-resolution hazard modeling with interpretable ML loss predic-
tion and a similarity-based analog search. The hazard module produces 150 arcsec raster fields of PGA, spectral
acceleration, and intensity using GMPE (Boore, D. M., & Atkinson, G. M) together with local soil amplification
to capture realistic spatial shaking and GMPE-related uncertainty. The loss module operates on geo-cells en-
coded with Risk-UE building classes and replacement costs, applying the Lagomarsino–Giovinazzi vulnerability
relations to generate D3, D4 and D5 damage states/levels (D3-Substantial to Heavy Damage, D4-Very Heavy
Damage, D5-Destruction) and baseline economic-loss estimates, thereby preserving engineering grounding for
subsequent ML steps. The core innovation is a weighted similarity metric that fuses complementary notions
of analogy: distributional comparisons of damage/loss (Wasserstein distance24), spatial Pearson correlations25

of gridded counts, and image-similarity (SSIM) on PGA/intensity TIFFs,26 with practitioner-tunable weights.
After identifying analog regions or geocells, we train localized regressors on building- and region-level features to
predict D3/D4/D5 counts and economic loss—combining ML’s predictive power with physics-based inputs and
standardized taxonomies.

Our pipeline was implemented and evaluated in 16 European–Mediterranean cities, located close to seismi-
cally active fault zones prone to earthquakes at both whole-city and geocell scales considering the correlation
between seismic risk and tectonic boundaries which is evaluated as strong (> 80% of major quakes), but also
secondary faults and human-induced factors contribute. We used a data-cube for fast queries, model training,
and visualization. The similarity-guided, localized machine learning approach produced low mean percentage
errors on held-out tests, offering actionable diagnostics for urban planning.



2. METHODOLOGY

Our methodology combines a physics-informed seismic risk assessment with a two-phase similarity algorithm
for analog search and adaptive damage prediction. It proceeds in two steps: first, an Earthquake Hazard
and Loss Assessment generates standardized damage and economic loss estimates; second, the similarity-based
algorithm enables transferable modeling across urban contexts. The framework processes data at a high spatial
resolution of 150 arcsec grid geocells (approximately 4.5× 4.5 km) across 16 European–Mediterranean cities, the
study considers three different earthquake scenarios for each city, with the magnitudes varying depending on
the specific city’s seismic risk to capture its unique vulnerability patterns. The framework’s design philosophy
emphasizes the integration of physics-based hazard modeling with interpretable machine learning, preserving
engineering grounding while enabling cross-regional generalization. This approach addresses the critical gap
between detailed hazard assessment and practical urban planning applications by maintaining traceability to
physically meaningful parameters throughout the prediction pipeline.

2.1 Study Area and Dataset

The framework was developed and validated using a comprehensive dataset spanning 16 European–Mediterranean
cities: Athens, Barcelona, Catania, Granada, Istanbul, Lisbon, London, Malaga, Messina, Naples, Nice, Palermo,
Paris, Rome, Vienna, and Vrancea. The core dataset, generated by the Earthquake Loss Estimation Routine
(ELER),27 which was developed under the Joint Research Activity-3 (JRA3) of the NERIES project (Network
of Research Infrastructures for European Seismology), funded by the European Community’s 6th Framework
Programme (FP6), is currently maintained by Boğaziçi University, KOERI, Earthquake Engineering Department.
The routine is designed to provide rapid earthquake loss estimates for Europe using pre-defined source models
and regional tectonic databases. The output data contains simulated risk analyses for the stated three earthquake
magnitudes.

This dataset is structured around a geo-cellular grid resolution, with each cell containing detailed building
inventories, population data, along with the simulated seismic outputs. As an example, Figure 1 illustrates the
content of a GeoTIFF file, which shows the spatial distribution of damaged reinforced concrete (RC) high-rise
buildings (≥ 9 stories) for D3–D5 levels induced by a deterministic earthquake scenario withMw = 7.4 (epicenter:
40◦53′42′′N, 28◦43′44′′E, depth = 13 km) in the Istanbul region.

Figure 1: The spatial distribution of damaged RC high-rise buildings for D3-D5 levels (Geotiff format)



The primary data inputs for our algorithm include:

• Damage and Economic Loss Tables: CSV files detailing building counts in damage states D3 (Signif-
icant to Heavy Damage), D4 (Very Heavy Damage), and D5 (Destruction), alongside total economic loss
per geocell.

• Ground Motion Raster Data: GeoTIFF (tiff) files representing the spatial distribution of ground
motion intensity measures, including Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) at
various periods (e.g., 0.2 s and 1.0 s).

• Regional Data: Manual input of earthquake epicenter information (Geographic WGS84 coordinates—
latitude and longitude—, seismic moment magnitudeMw, and depth of focus); ancillary text files containing
parameters such as local soil conditions (VS30) compiled from the USGS Global Vs30 database; active fault
line data gathered from the Global Earthquake Model Foundation (GEM), and the European Seismic Hazard
Model (ESHM20).

2.2 Earthquake Hazard and Loss Assessment

The estimation of damaged states and economic losses involves probabilistic models such as fragility curves,
which relate ground motion intensity to the likelihood of exceeding specific damage thresholds. These curves are
derived from empirical data, expert judgment, or numerical simulations, and their parameters—median ground
motion values (µ) and dispersion (β)—introduce uncertainties into the analysis. For example, a lognormal
probability distribution is commonly used to capture the variability in building performance, but the accuracy
of such distributions relies heavily on the quality and quantity of available data. Additionally, the heterogeneity
of building stock, variations in construction quality, and adherence to building codes further complicate the
assessment of structural vulnerabilities. Similarly, economic loss estimation compounds the uncertainty by
requiring assumptions about replacement costs, repair costs, and indirect losses such as economic disruption.
These estimates are influenced by local economic conditions, infrastructure interdependencies, and the duration
of service outages.

The implemented methodology, in accordance with the estimation process, mainly comprises three stages:

1. Estimation of the spatial distribution of ground motion parameters determined by means of region-specific
Ground Motion Prediction Equations (GMPEs), using shear-wave velocity distributions or other regional
ground values for a given earthquake magnitude, depth, and epicenter location information.

2. Estimation of building damages at different levels of complexity, commensurate with the availability of an
inventory of the human-built environment.

3. Direct economic loss estimation resulting from building damages.

The initial step establishes a baseline physical risk profile for a scenario event by integrating three sequen-
tial modules: an Earthquake Hazard Assessment, a Building Inventory and Vulnerability Assessment, and an
Economic Loss Evaluation.

2.2.1 Earthquake hazard assessment

The earthquake hazard scenarios were simulated using a deterministic approach, with epicentral information of
relevant events for the stated magnitudes. The Boore and Atkinson (2008) ground motion prediction equations
(GMPEs) were applied to derive intensity measures, including Peak Ground Acceleration (PGA), Peak Ground
Velocity (PGV), and Spectral Acceleration (SA) at 0.2 s, 1.0 s, and 30 s. Local site conditions were incorporated
through a surface correction function dependent on VS30 values, thereby adjusting the hazard field for near-surface
amplification. To ensure consistency with vulnerability models, ground motions were converted into macroseismic
intensity using the European Macroseismic Scale (EMS-98; Grünthal, 1998).28 This facilitated application of
the observed-damage-based vulnerability method, often referred to as the macroseismic method4,29 (Giovinazzi
& Lagomarsino, 2004, 2005).



This approach expresses the expected mean damage grade (µD) as a function of seismic intensity (I), the
building’s vulnerability index (V ), and ductility index (Q). The basic expression adopted is given in Equation 1.

µD = 2.5

[
1 + tanh

(
I + 6.5V − 13.1

2.3

)]
, (1)

where µD is the mean damage grade (ranging from 0 = no damage to 5 = destruction), I is the macroseismic
intensity (EMS-98), V is the building vulnerability index (assigned by structural type, typically between 0.5–1.0),
and Q is the ductility index (modulating the slope of the damage–intensity function).

From this function, the probability of a building reaching each EMS-98 damage grade Dk (k = 0, . . . , 5) is
obtained using a binomial probability distribution:

P (Dk) =

(
5

k

)
µk
D(1− µD)5−k . (2)

The expected number of buildings in each damage state is then calculated as:

NDSi
= P (DSi) ·Ntotal , (3)

where NDSi
is the expected number of buildings in damage state DSi, P (DSi) is the probability of being in

damage state DSi, and Ntotal is the total number of buildings in the inventory.

These relationships enable the translation of intensity fields into probabilistic distributions of structural
damage across the exposed building stock. The resulting data is displayed as rasterized fields (PGA, PSA0.2,
PSA30, and intensity) and stored in GeoTIFF files, enabling subsequent spatial analysis and visualization of
seismic hazard patterns.

2.2.2 Building Inventory and Vulnerability Assessment

The building inventory for the study area was constructed using proxy data sources. In the absence of a
detailed regional building database, building exposure was approximated through the CORINE Land Cover
dataset (European Environment Agency, 1999) combined with population distribution data from LandScan. The
method assumes a correlation between population density, land cover class, and the distribution of residential and
non-residential buildings. This proxy inventory was then spatially aggregated into grid cells of 150 arcseconds
(approximately 4.5 km resolution), forming the default exposure dataset for the analysis.

For the classification of buildings, the RISK-UE taxonomy (2001–2004) was adopted. This taxonomy provides
a harmonized European framework that categorizes buildings according to their structural typologies, materials,
and construction practices. It enables consistent linkage between building classes and vulnerability functions
developed for seismic risk assessment. By applying this taxonomy, the regional stock was represented in terms
of dominant structural types, allowing for systematic vulnerability assessment across the study area.

Vulnerability relationships were derived from the models proposed by Lagomarsino and Giovinazzi (2006),
which link EMS-98 intensity levels to expected damage grades for different building typologies. These relation-
ships are probabilistic functions that define the likelihood of buildings reaching various states of damage (slight,
moderate, extensive, and complete) under a given ground motion intensity. The application of these vulner-
ability curves ensured compatibility with the hazard inputs expressed in EMS-98 intensities, thereby enabling
coherent building damage estimation. The methodology evaluates three critical damage states: D3 (Significant
to Heavy Damage), D4 (Very Heavy Damage), and D5 (Destruction), which represent progressively severe levels
of structural compromise.

The vulnerability calculation process operates at the geocell level, with each cell containing detailed building
inventory data including construction type distribution, total building counts, and population density. The
damage assessment considers multiple building height categories (RC L: low-rise, RC M: mid-rise, RC H: high-
rise reinforced concrete structures) to capture the differential seismic response of buildings with varying dynamic
characteristics.



2.2.3 Economic loss evaluation

Economic losses were computed directly from the building damage distributions estimated through the macro-
seismic vulnerability method. In ELER’s Level 1 framework, losses are expressed as the Expected Loss Ratio
(ELR), which combines the probabilities of damage states with their associated repair cost factors. For each
building class c in grid cell j, the ELR is defined as:

ELRc,j =

5∑
k=0

P (Dk,c,j) ·Rk , (4)

where P (Dk,c,j) is the probability that buildings of class c in cell j are in damage state k, and Rk is the repair
cost ratio associated with damage state k (ranging from 0 for no damage to ∼ 1.0 for complete destruction).

The direct economic loss for each grid cell is then calculated as:

Lossj =
∑
c

Nc,j · Vc · ELRc,j , (5)

where Nc,j is the number of buildings of class c in grid cell j, Vc is the average replacement cost per building of
class c, and ELRc,j is the expected loss ratio for class c in cell j.

This formulation, adapted from Giovinazzi & Lagomarsino (2006) and implemented in ELER (RISK-UE,
2004), provides a quantitative framework for converting structural damage into direct monetary losses. The
resulting loss distribution, aggregated at the 150 arcsec grid scale, reflects the spatial pattern of potential
economic impacts. While this method relies on proxy exposure data and approximate repair cost ratios, it
provides a consistent and scalable approach to evaluate direct losses at the European scale. Future refinements
may incorporate country-specific replacement values or calibration with insurance and post-disaster datasets.

2.3 Two-Phase Similarity and Prediction Algorithm

The core innovation of our work is a two-phase algorithm designed to first identify regions with similar seismic risk
profiles and then train customized prediction models for them. This structure stabilizes the influence of seismic
and geographical variables in the first phase, allowing the second phase to focus on predicting vulnerability based
on building-specific features.

2.3.1 Data preprocessing and structure

The algorithm operates on preprocessed datasets extracted from the comprehensive earthquake simulation re-
sults. The preprocessing stage selects relevant data components from the raw NiK System outputs: damage
classification tables (D3, D4, D5), total economic loss tables, ground motion raster files, and site condition data.
This preprocessing ensures data consistency and compatibility across the 16-city dataset while maintaining the
high-resolution geocell structure essential for spatial analysis.

2.3.2 Phase 1: weighted similarity assessment

The objective of Phase 1 is to identify the top-k regions or geocells most similar to a given query input. This
is accomplished by calculating a custom, multi-component Overall Similarity Score. This score is a weighted
aggregation of three primary similarity metrics: Damage Loss Similarity, Economic Loss Similarity, and Ground
Motion Similarity.

Damage Loss Similarity
For each damage class (D3, D4, D5), the algorithm computes a composite Damage Similarity score through four
complementary metrics:

1) Distribution Similarity: Quantifies the statistical similarity of damage count distributions using the
Wasserstein distance metric applied to the expected damage ratios across geocells. The expected damage ratio
in each cell represents the number of buildings projected to be temporarily unusable after an earthquake.

This is typically derived from the estimated count of buildings with moderate or higher damage levels, where
even partial structural damage can render a building unsuitable for immediate occupancy.



This measure captures both the magnitude and the distributional shape of damage patterns between regions.
The Wasserstein distance is defined as:

W1(P,Q) = inf
γ∈Γ(P,Q)

∫
R×R

|x− y| dγ(x, y), (6)

where Γ(P,Q) denotes the set of all joint distributions with marginals P and Q. For empirical (discrete)
distributions this corresponds to the usual Earth Mover’s Distance computed on the damage-count support.

Denoting W = W1(P,Q), we convert the numeric distance to a similarity score on [0, 1] via a monotonic
mapping. Two practical choices are:

Sdistribution = 1− W −Wmin

Wmax −Wmin
, Wmin ≤ W ≤ Wmax, (7)

for min–max normalization, and
Sdistribution = exp(−αW ), α > 0, (8)

for the exponential kernel, whereWmin andWmax are the minimum and maximumWasserstein distances observed
(or estimated) across the search space and α is a tunable scale parameter. The mapping strategy is configurable in
the pipeline; the default is min–max normalization, yielding a bounded Distribution Similarity Sdistribution ∈ [0, 1].

2) Spatial Similarity: Evaluates the geographic correlation of damage patterns using Pearson correlation
coefficients calculated on gridded damage counts with spatial coordinates. The spatial analysis employs a 50-cell
grid resolution to balance computational efficiency with spatial detail preservation.

The vectors c(q), c(cand) ∈ RM , where M is the number of grid cells after aggregation.

The spatial similarity is computed from Pearson’s correlation as

Sspatial = ρ
(
c(q), c(cand)

)
, (9)

with

ρ
(
c(q), c(cand)

)
=

∑M
i=1

(
c
(q)
i − c̄(q)

)(
c
(cand)
i − c̄(cand)

)√∑M
i=1

(
c
(q)
i − c̄(q)

)2 √∑M
i=1

(
c
(cand)
i − c̄(cand)

)2 , (10)

where c̄(q) and c̄(cand) are the sample means of the respective vectors.

When a bounded similarity in [0, 1] is required, ρ ∈ [−1, 1] can be rescaled as

S
[0,1]
spatial =

ρ
(
c(q), c(cand)

)
+ 1

2
. (11)

The aggregation window G (default 50) and the choice whether to use raw counts or loss ratios are tunable
parameters in the pipeline.

3) Population Similarity: Assesses demographic exposure through population-to-building ratios, capturing
the relationship between human exposure and built environment characteristics. The population-to-building ratio
in geocell c is defined as:

rc =
Pc

Bc + ε
, ε > 0, (12)

where Pc denotes the population in geocell c and Bc denotes the number of buildings. We set ε = 1 by default
to avoid division by zero when Bc = 0.



For a query region and a candidate region, let r(q) and r(cand) denote their respective ratios. The scalar
population similarity is computed as the inverse normalized absolute difference:

Spopulation = 1− | r(q) − r(cand) |
Rmax −Rmin

, Rmin ≤ |r(q) − r(cand)| ≤ Rmax, (13)

with values clipped to Spopulation ∈ [0, 1]. Here Rmin and Rmax denote the minimum and maximum absolute
differences observed (or estimated) across the candidate set.

When ratios are available as aligned vectors over M grid cells, r(q), r(cand) ∈ RM , the similarity is defined
using the mean absolute difference:

Spopulation = 1−
1
M

∑M
i=1 | r

(q)
i − r

(cand)
i |

Rmax −Rmin
, (14)

again clamped to [0, 1].

As an alternative, one may use an exponential kernel,

Spopulation = exp
(
− β|r(q) − r(cand)|

)
, β > 0, (15)

where β is a tunable scale parameter. The mapping strategy and the choice of scalar versus vector aggregation
are configurable in the pipeline, with min–max normalization as the default.

4) Building Similarity: Building similarity compares the total building inventory characteristics between
regions, accounting for the influence of building stock density on damage patterns. For scalar inventories, it is
defined as:

Sbuilding = 1− |B(q) −B(cand)|
max

(
B(q), B(cand), ε

) , ε = 1 (default), (16)

which ensures Sbuilding ∈ [0, 1].

For gridded inventories b(q),b(cand) ∈ RM , the similarity extends to

Sbuilding = 1− 1

M

M∑
i=1

|b(q)i − b
(cand)
i |

max
(
b
(q)
i , b

(cand)
i , ε

) . (17)

As an alternative, one may use Pearson correlation rescaled to [0, 1],

Sbuilding =
ρ+ 1

2
, (18)

where ρ is the Pearson correlation coefficient between b(q) and b(cand).

Composite Damage Similarity:

The composite damage similarity for each damage class is defined as:

SDi(d) = w1 Sdistribution(d) + w2 Sspatial(d) + w3 Spopulation(d) + w4 Sbuilding(d) , d ∈ {D3, D4, D5}, (19)

where Sdistribution, Sspatial, Spopulation, and Sbuilding are the component similarities.

With the default weights

w1 = 0.40, w2 = 0.30, w3 = 0.15, w4 = 0.15 .

Equation (19) is evaluated separately for each damage classD3, D4, andD5, producing three composite similarity
values.



Economic Loss Similarity
Economic loss similarity consists of two complementary measures: a base similarity that compares the overall
magnitude of losses between regions, and a spatial loss-ratio similarity that evaluates the distribution of losses
normalized by exposure.

Base similarity, Sbase, applies the same distributional approach used for damage assessment to economic
loss values, comparing the total economic loss values of a query region Q and a candidate region C.

Sbase(Q,C) = 1−
∣∣LQ − LC

∣∣
max(LQ, LC)

, (20)

where LQ and LC denote the total economic losses of the query and candidate regions, respectively. This
formulation ensures a bounded similarity score between 0 and 1.

Spatial loss ratio similarity, SspatialLossRatio, incorporates geographic weighting by analyzing the ratio of
economic losses between compared regions to capture how well the spatial distribution of normalized losses aligns
between the two regions.

SspatialLossRatio(Q,C) = corr

(
LQ,i

EQ,i
,
LC,i

EC,i

)
, (21)

where LQ,i and LC,i represent the economic losses in geocell i of regions Q and C, and EQ,i, EC,i are the
corresponding exposure metrics (e.g., total building replacement cost). The correlation is typically measured
using Pearson’s r.

The composite Economic Loss Similarity is calculated as:

SEcon = w1 · Sbase + w2 · SspatialLossRatio , (22)

where the default weights are w1 = 0.7 and w2 = 0.3.

Ground Motion Similarity

Ground motion comparison employs the Structural Similarity Index Measure (SSIM) applied to the GeoTIFF
raster files containing PGA, PSA02, and PSA30 values. SSIM provides a perceptually-motivated similarity
measure that captures both intensity and spatial pattern similarities in ground motion fields.

The ground motion similarity is defined as

SGM = w1 · SSIMPGA + w2 · SSIMPSA02 + w3 · SSIMPSA30 , (23)

where the default weights are w1 = 0.33, w2 = 0.33, and w3 = 0.34.

Overall Similarity Score

The final similarity assessment integrates all component similarities through a weighted sum with practitioner-
tunable weights:

SOverall = WD3SD3 +WD4SD4 +WD5SD5 +WEconSEcon +WGMSGM , (24)

where the default weights are

WD3 = 0.15, WD4 = 0.20, WD5 = 0.25, WEcon = 0.30, WGM = 0.10 .

These weights prioritize severe damage states and economic impacts while maintaining sensitivity to ground
motion patterns. An optional feature importance term, derived from regression tree analysis, can also be incor-
porated to enhance similarity assessment accuracy.



Operational Modes

Phase 1 operates in two distinct modes to support different analytical requirements:

City-wide Mode compares entire urban regions as integrated units, evaluating all geocells within each city
collectively. This mode identifies cities with similar overall seismic response characteristics and is particularly
useful for regional planning and policy transfer applications.

Geocell-based Mode performs individual geocell comparisons, enabling fine-scale similarity assessment and
localized prediction. This mode supports neighborhood-level analysis and detailed urban planning applications.
For both modes, the algorithm returns the k most similar regions (where k is user-specified) ranked by Overall
Similarity Score, providing a flexible framework for similarity-based analysis at multiple scales.

2.3.3 Phase 2: localized damage and loss prediction

Phase 2 leverages the similarity clusters identified in Phase 1 to train specialized regression models for damage
and economic loss prediction. This approach capitalizes on the principle that regions with similar seismic response
characteristics will benefit from localized predictive models trained on relevant analog data.

Feature Selection Strategy

The model training protocol addresses the challenge of heterogeneous feature availability across cities through
a dynamic feature selection approach. Since Phase 1 calculations predominantly utilize earthquake parameters
and geographic features, the influence of these variables is captured within the similarity-based clustering pro-
cess. Phase 2 models therefore focus on building-specific and regional characteristics that vary within similarity
clusters. The feature selection process filters out variables already incorporated in Phase 1 similarity calcula-
tions: geocell identifiers, geometric data, regional identifiers, demographic variables, building inventory totals,
and ground motion intensity. The remaining features consist primarily of building type distributions and local
characteristics that influence vulnerability within seismically similar regions.

Training Data Composition

Training datasets are constructed from the geocells identified as similar in Phase 1, ensuring that models are
trained on regions with comparable seismic response characteristics. This similarity-guided training approach
improves model relevance and prediction accuracy compared to global models trained on heterogeneous regional
data. The training process adapts to the specific feature availability within each similarity cluster, automatically
handling missing building type data and ensuring robust model performance across diverse urban contexts. This
adaptive approach enables the framework to operate effectively across cities with varying building inventory
detail and classification systems.

Model Training and Implementation

The prediction system employs ensemble methods specifically selected for their interpretability and perfor-
mance with heterogeneous feature sets. Two model types are implemented:

1) Random Forest Regressor: Configured with hyperparameters n estimators = 100, max depth = 20
and min samples split = 5. This configuration balances model complexity with interpretability while providing
robust performance across diverse feature distributions.

2) Gradient Boosting Regressor: Configured with hyperparameters n estimators = 100, learning rate =
0.1 and max depth = 5. The gradient boosting approach provides complementary modeling capabilities, partic-
ularly for capturing non-linear relationships between building characteristics and damage outcomes.

Separate models are trained for each damage class (D3, D4, D5) and economic loss prediction, resulting in
four predictive models per similarity cluster. The models are persistently stored to enable efficient inference and
reuse across queries.



2.3.4 Operational Framework

To operationalize this methodology, we designed a framework centered on a data cube. This serves as a centralized
repository for the entire multi-city dataset (’world data’) and allows for efficient slicing and querying. When a
user defines a query region or geocell, the system executes the two-phase algorithm within this environment. The
outputs—including the list of similar regions, similarity scores, and damage/loss predictions—are then passed
to an integrated front-end interface for visualization and analysis, enabling interactive exploration by urban
planners, engineers, and policymakers (see Fig. 2).

Figure 2: Workflow of the operational framework, illustrating the data cube, user query, two-phase algorithm, and

front-end output.

3. RESULTS

The two-phase similarity and prediction framework was evaluated across 16 European-Mediterranean cities, with
each city analyzed under three earthquake magnitude scenarios specifically designed for their unique seismic risk
profiles.

3.1 Phase 1 Results: Similarity Assessment and Regional Clustering

The primary objective of Phase 1 was to quantify the similarity between different urban seismic scenarios to
identify meaningful analogs for transferable risk prediction. The algorithm was applied across all 16 cities for
three distinct magnitude scenarios. The top-five most similar scenarios for each query are presented in Tables 1
(lowest magnitude), 2 (middle magnitude), and 3 (highest magnitude).

City codes & Table Format: ATH = Athens, BCN = Barcelona, CTA = Catania, GRX = Granada, IST =
Istanbul, LIS = Lisbon, LON = London, AGP = Malaga, MES = Messina, NAP = Naples, NCE = Nice, PMO
= Palermo, PAR = Paris, ROM = Rome, VIE = Vienna, VRC = Vrancea. Each cell lists the top-5 analogs in
the format “CodeMagn. (similarity)”.

3.1.1 Similarity patterns across magnitude scenarios

A dominant pattern across all magnitudes is the high degree of intra-city similarity. In most cases, the scenario
most similar to a given city is another scenario in the same city at a different magnitude. Table 1 shows the
similarity results for the lowest-magnitude scenario per city, where self-similarity is strongest. Eleven of sixteen
cities have higher-magnitude scenarios among the top-2 analogs, highlighting internal consistency in vulnerability
patterns. Notable examples include Barcelona (BCN6.5 as top analog for BCN6.0, 0.7741), Granada (GRX6.5
for GRX6.0, 0.7026), and Vrancea (VRC6.5 for VRC6.0, 0.7223).



Table 1: Magnitude-1 (lowest magnitude per city) similarity results.

City Scenario Top-1 Top-2 Top-3 Top-4 Top-5

ATH 6.0 NAP6.0 (0.6733) ATH6.5 (0.6646) VIE6.1 (0.6416) ATH7.0 (0.6380) MES6.0 (0.6267)

BCN 6.0 BCN6.5 (0.7741) AGP6.5 (0.7382) BCN6.8 (0.7188) AGP7.0 (0.6968) MES6.0 (0.6468)

CTA 6.0 MES6.0 (0.6836) VRC6.5 (0.6820) GRX6.5 (0.6723) AGP6.5 (0.6647) BCN6.0 (0.6434)

GRX 6.0 GRX6.5 (0.7026) AGP6.0 (0.6167) GRX7.4 (0.6050) VRC6.0 (0.5857) VRC6.5 (0.5451)

IST 6.0 IST6.5 (0.6355) LIS6.0 (0.5982) PMO6.0 (0.5902) PAR4.9 (0.5591) MES6.0 (0.5563)

LIS 6.0 LIS6.5 (0.6342) IST6.0 (0.5982) MES6.0 (0.5702) PAR4.9 (0.5609) NAP6.0 (0.5593)

LON 6.0 LON5.8 (0.7316) LON6.5 (0.6414) PAR6.0 (0.6335) ATH6.5 (0.5967) PAR6.5 (0.5749)

AGP 6.0 GRX6.0 (0.6167) GRX6.5 (0.6027) AGP6.5 (0.5992) VRC6.5 (0.5538) VRC6.0 (0.5473)

MES 6.0 MES6.5 (0.7049) CTA6.0 (0.6836) PMO6.0 (0.6514) AGP6.5 (0.6501) BCN6.0 (0.6468)

NAP 6.0 NAP6.5 (0.6901) LIS6.5 (0.6883) ATH6.0 (0.6733) IST6.5 (0.6529) PMO6.0 (0.6243)

NCE 6.0 NCE6.5 (0.6878) NCE6.8 (0.6575) BCN6.5 (0.6396) PMO6.5 (0.6316) BCN6.8 (0.6283)

PMO 6.0 PMO6.5 (0.7115) IST6.5 (0.6622) PMO7.0 (0.6543) MES6.0 (0.6514) BCN6.0 (0.6444)

PAR 4.9 VRC6.5 (0.5893) MES6.0 (0.5871) CTA6.0 (0.5626) LIS6.0 (0.5609) VRC6.0 (0.5605)

ROM 6.0 VIE6.1 (0.6271) IST6.5 (0.6232) BCN6.5 (0.6230) ATH6.0 (0.6226) MES6.5 (0.6210)

VIE 6.1 VIE6.5 (0.6825) ATH6.0 (0.6416) MES6.5 (0.6284) ROM6.0 (0.6271) VIE7.0 (0.6251)

VRC 6.0 VRC6.5 (0.7223) GRX6.0 (0.5857) VRC7.4 (0.5803) PAR4.9 (0.5605) AGP6.0 (0.5473)

Table 2: Magnitude-2 (middle magnitude per city) similarity results.

City Scenario Top-1 Top-2 Top-3 Top-4 Top-5

ATH 6.5 ATH6.0 (0.6646) ATH7.0 (0.6642) NAP6.5 (0.6117) LON6.0 (0.5967) VIE6.1 (0.5796)

BCN 6.5 BCN6.0 (0.7741) BCN6.8 (0.7673) AGP6.5 (0.6748) AGP7.0 (0.6612) NCE6.0 (0.6396)

CTA 6.5 CTA6.0 (0.4910) CTA7.4 (0.4771) BCN6.0 (0.4356) GRX7.4 (0.4346) PMO6.0 (0.4338)

GRX 6.5 GRX7.4 (0.7314) GRX6.0 (0.7026) AGP6.5 (0.6951) CTA6.0 (0.6723) VRC6.5 (0.6636)

IST 6.5 PMO6.0 (0.6622) NAP6.0 (0.6529) PMO6.5 (0.6478) IST7.4 (0.6470) IST6.0 (0.6355)

LIS 6.5 NAP6.0 (0.6883) LIS7.4 (0.6682) LIS6.0 (0.6342) IST6.5 (0.6312) ATH6.0 (0.6172)

LON 5.8 LON6.0 (0.7316) PAR6.0 (0.6691) LON6.5 (0.6356) NCE6.0 (0.6132) VIE6.1 (0.5925)

AGP 6.5 AGP7.0 (0.7463) BCN6.0 (0.7382) GRX6.5 (0.6951) BCN6.5 (0.6748) CTA6.0 (0.6647)

MES 6.5 MES6.0 (0.7049) MES7.4 (0.6588) VIE6.1 (0.6284) ROM6.0 (0.6210) ATH6.0 (0.6202)

NAP 6.5 NAP6.0 (0.6901) NAP7.2 (0.6535) LIS7.4 (0.6310) ATH6.5 (0.6117) LIS6.5 (0.5994)

NCE 6.5 NCE6.8 (0.7047) NCE6.0 (0.6878) PMO7.0 (0.5873) IST7.4 (0.5830) BCN6.8 (0.5744)

PMO 6.5 PMO6.0 (0.7115) PMO7.0 (0.7037) IST6.5 (0.6478) NCE6.0 (0.6316) PAR6.0 (0.5951)

PAR 6.0 LON5.8 (0.6691) PAR6.5 (0.6606) LON6.0 (0.6335) VRC7.4 (0.6034) NCE6.0 (0.6024)

ROM 6.5 ROM6.7 (0.7341) ROM6.0 (0.6085) VIE6.5 (0.5748) BCN6.8 (0.5725) CTA7.4 (0.5589)

VIE 6.5 VIE6.1 (0.6825) VIE7.0 (0.6641) NAP6.5 (0.5872) ATH6.5 (0.5795) ROM6.5 (0.5748)

VRC 6.5 VRC6.0 (0.7223) VRC7.4 (0.7179) CTA6.0 (0.6820) GRX6.5 (0.6636) MES6.0 (0.6287)

Table 2 demonstrates the evolution of similarity patterns at intermediate magnitude levels, where cross-
regional relationships become more prominent while maintaining some self-similarity characteristics. Cities like
Barcelona and Granada continue to show strong internal coherence (BCN6.0 and BCN6.8 ranking highly for
BCN6.5), while others develop stronger external analog networks. Istanbul’s pattern exemplifies this transition,
with Palermo (PMO6.0) emerging as the top analog (0.6622 similarity) rather than its own magnitude variants.

Table 3 shows the similarity landscape for the highest-magnitude scenarios, where universal vulnerability
patterns outweigh local variations. The persistence of strong self-similarity in some cities (AGP7.0 as top analog
for AGP6.5 with 0.7463, Rome ROM6.5 for ROM6.7 with 0.7341) contrasts with the emergence of diverse analog
networks in others, indicating different vulnerability progression patterns across the study regions.



Table 3: Magnitude-3 (highest magnitude per city) similarity results.

City Scenario Top-1 Top-2 Top-3 Top-4 Top-5

ATH 7.0 ATH6.5 (0.6642) ATH6.0 (0.6380) VIE7.0 (0.5748) VIE6.5 (0.5541) MES7.4 (0.5507)

BCN 6.8 BCN6.5 (0.7673) BCN6.0 (0.7188) AGP7.0 (0.6342) NCE6.0 (0.6283) AGP6.5 (0.6267)

CTA 7.4 CTA6.0 (0.6065) PMO7.0 (0.5714) ROM6.7 (0.5591) ROM6.5 (0.5589) ATH6.5 (0.5558)

GRX 7.4 GRX6.5 (0.7314) AGP7.0 (0.6861) BCN6.0 (0.6190) AGP6.5 (0.6178) NAP6.0 (0.6062)

IST 7.4 IST6.5 (0.6470) PMO7.0 (0.5845) NCE6.5 (0.5830) NCE6.8 (0.5623) PMO6.5 (0.5614)

LIS 7.4 LIS6.5 (0.6682) NAP6.5 (0.6310) NAP6.0 (0.5793) NAP7.2 (0.5666) ATH6.5 (0.5608)

LON 6.5 LON6.0 (0.6414) LON5.8 (0.6356) PAR6.5 (0.5879) NCE6.8 (0.5477) PAR6.0 (0.5394)

AGP 7.0 AGP6.5 (0.7463) BCN6.0 (0.6968) GRX7.4 (0.6861) BCN6.5 (0.6612) BCN6.8 (0.6342)

MES 7.4 MES6.5 (0.6588) MES6.0 (0.6427) CTA7.4 (0.5531) ROM6.7 (0.5527) ATH7.0 (0.5507)

NAP 7.2 NAP6.5 (0.6535) NAP6.0 (0.6096) LIS7.4 (0.5666) ATH7.0 (0.5332) VIE7.0 (0.5217)

NCE 6.8 NCE6.5 (0.7047) NCE6.0 (0.6575) IST7.4 (0.5623) PMO7.0 (0.5605) LON6.5 (0.5477)

PMO 7.0 PMO6.5 (0.7037) PMO6.0 (0.6543) NCE6.0 (0.6039) NCE6.5 (0.5873) IST7.4 (0.5845)

PAR 6.5 PAR6.0 (0.6606) LON6.5 (0.5879) LON6.0 (0.5749) LON5.8 (0.5632) NCE6.5 (0.5509)

ROM 6.7 ROM6.5 (0.7341) ROM6.0 (0.5917) CTA7.4 (0.5591) BCN6.8 (0.5532) MES7.4 (0.5527)

VIE 7.0 VIE6.5 (0.6641) VIE6.1 (0.6251) ATH7.0 (0.5748) ATH6.5 (0.5325) PAR6.5 (0.5224)

VRC 7.4 VRC6.5 (0.7179) NAP6.0 (0.6108) ATH6.0 (0.6072) ROM6.0 (0.6060) VIE6.1 (0.6036)

3.1.2 Regional clustering and cross-national relationships

Beyond self-similarity, the results reveal geographically and tectonically coherent clusters. Cities in similar seismic
and urban contexts often appear as top analogs, consistent with engineering and seismological expectations.
On the Iberian Peninsula, Barcelona, Granada, and Málaga form a coherent vulnerability group across all
magnitudes, exemplified by the reciprocal high rankings between Granada and Málaga (GRX6.0 ranking AGP6.0
at 0.6167, AGP6.0 ranking GRX6.0 at 0.6167; Table 1). Southern Italian cities—Catania, Messina, Naples, and
Palermo—also show strong mutual affinity, with Catania–Messina particularly stable (MES6.0 consistently the
top analog for CTA6.0 at 0.6836). These regional clusters likely reflect shared construction practices, vulnerability
profiles, and crustal properties, highlighting the potential for knowledge transfer and generalized mitigation
strategies (see Fig. 3).

Figure 3: Similarity network of cities (threshold ≥ 0.6), where node colors denote connectivity and edge thickness
indicates similarity strength.



At the same time, outlier patterns emerge: Rome frequently clusters with Central European cities like
Vienna rather than Italian counterparts, highlighting the influence of urban development patterns and geological
conditions beyond national boundaries. Vienna itself represents an especially versatile profile, ranking highly
as an analog for multiple diverse cities—including Athens (VIE6.1 ranking second for ATH6.0 at 0.6416) and
Rome (VIE6.1 as top analog for ROM6.0 at 0.6271)—demonstrating that its seismic vulnerability characteristics
extend beyond the Central European context.

3.1.3 Magnitude-dependent similarity, vulnerability transitions, and transferability

The Phase 1 similarity assessment reveals clear, magnitude-dependent structure in urban vulnerability patterns
and strong potential for transferability into Phase 2. Some cities (e.g., Barcelona, Granada, Vrancea, Vienna)
show high self-similarity across magnitudes (typically> 0.65), indicating predictable vulnerability scaling suitable
for magnitude-scaling models. Other cities exhibit changing analog networks as intensity increases — Athens,
for example, is closely analogous to Naples at lower magnitudes (NAP6.0 → ATH6.0: 0.6733) but shifts analogs
at higher magnitudes, suggesting threshold-triggered damage mechanisms. At high intensities we observe con-
vergence toward cross-regional analogs: extreme shaking can reveal common high-damage failure modes that
transcend local building-stock differences (Istanbul’s progression from regional analogs such as Lisbon/Palermo
to a broader set of European analogs illustrates this). The multi-component similarity metric — which bal-
ances ground-motion components WGM with more heavily weighted damage and economic-loss components
WD3,WD4,WD5,WEcon — produces coherent clusters that align with known construction traditions and hazard
characteristics and identifies sensible analogs across differing shaking levels (e.g., ATH–NAP, LON–PAR).

These promising similarity relationships establish strong foundations for Phase 2 model training, where re-
gression models will be trained on similarity-based regional groupings. The clear clustering patterns suggest
that models trained on analog cities will benefit from enhanced data relevance, as similar regions share common
vulnerability characteristics that extend beyond geographic boundaries. The magnitude-dependent evolution
of similarity patterns additionally suggests that different intensity scenarios may require distinct modeling ap-
proaches, with some cities benefiting from magnitude-scaling models while others require composite approaches
capturing multiple vulnerability pathways.

3.2 Phase 2 Results:

The Phase 2 similarity-guided prediction framework was evaluated across 48 city–magnitude scenarios spanning
the 16 European–Mediterranean cities, using both Random Forest (RF) and Gradient Boosting (GB) regression
models. The evaluation focused on four key prediction targets: damage classesD3 (Significant to Heavy Damage),
D4 (Very Heavy Damage), D5 (Destruction), and total economic loss. Performance was assessed using coefficient
of determination (R2), Root Mean Square Error (RMSE), and percentage error metrics. Percent error provides
an intuitive, policy-relevant sense of typical deviation; however, it can be unstable when observed values are very
small and requires careful interpretation. The tables of per-scenario results are included in the Appendix.

3.2.1 Overall model performance and comparison

Both ensemble methods demonstrated strong predictive capabilities, with the majority of scenarios achieving
R2 values exceeding 0.80 across all prediction targets. The Random Forest (RF) model showed slightly superior
performance in terms of prediction stability, with R2 values ranging from 0.52 to 0.99 for damage predictions and
consistently high performance (R2 > 0.85) for economic loss estimation. The Gradient Boosting (GB) model
exhibited comparable performance ranges but with marginally higher variance in prediction accuracy across
different urban contexts.

RMSE values, measured in building counts per geocell, were generally lower and more stable for Random
Forest (RF) across all damage classes (D3, D4, D5), though the absolute values decreased significantly from D3
(RF: 1.07–63.94) to D5 (RF: 0.004–16.87) due to smaller count totals. For the most practical metric, Percentage
Error, RF achieved lower median errors for damage predictions (D3: 29.8%, D4: 41.2%, D5: 46.9%) compared to
GB (D3: 32.1%, D4: 44.3%, D5: 52.8%). Both models showed the highest accuracy for economic loss predictions
(RF median error: 21.4%; GB: 24.7%), and despite occasional extreme errors, the majority of their predictions
were within acceptable ranges for application.



Table 4: Median Phase-2 predictive performance across all city–scenario selections. Reported values are medians
computed across scenarios for each target and model.

Random Forest Gradient Boosting

Target R2 Median error (%) R2 Median error (%)

D3 (Moderate/Heavy) 0.89 29.8% 0.88 32.1%

D4 (Very Heavy) 0.84 41.2% 0.86 44.3%

D5 (Destruction) 0.92 46.9% 0.91 52.8%

Economic loss 0.94 21.4% 0.93 24.7%

Economic Loss Prediction Excellence: Both models achieved exceptional performance in economic loss
prediction, with 89% of scenarios yielding R2 values above 0.90. The Random Forest (RF) model achieved a
median R2 of 0.94 for economic loss prediction, while Gradient Boosting (GB) achieved a median R2 of 0.93.
This strong performance reflects the effectiveness of the similarity-based clustering approach in identifying regions
with comparable economic vulnerability patterns. Economic loss error rates demonstrated superior consistency
compared to individual damage classes, with 75% of scenarios achieving error percentages below 30%. This
performance advantage likely stems from the aggregative nature of economic loss calculations, which smooth
out individual building-level prediction uncertainties while capturing the overall risk profile effectively. The
distribution of economic-loss error percentages is shown in Fig. 4(a).

Damage Class Performance Hierarchy: Predictive difficulty across damage classes is ordered with D4
being the least stable, while D3 and D5 are more predictable in terms of explained variance (R2). However,
the rarity of D5 destruction inflates its percentage error despite small RMSE values. Both Gradient Boosting
(GB) and Random Forest (RF) achieved comparable, high median R2 levels. For reliable operational use,
emphasis should be placed on robust statistics (median/IQR) and absolute-error measures (RMSE) over mean-
based summaries, and percentage errors calculated on near-zero counts should be flagged, since these metrics are
highly sensitive to a few extreme cases. Box plot analysis revealed that D3 predictions were the most consistent,
with most errors below 50%. Conversely, D4 and D5 errors showed high variability, occasionally exceeding 200–
500% in scenarios with low building diversity or unique urban characteristics. The per-class error distributions
are shown in Fig. 4(b).

(a) Economic loss error distributions (b) Error distributions by damage class

Figure 4: Box plots of prediction error distributions across 48 scenarios.



3.2.2 Geographic patterns and contextual performance

Regional Performance Variations: Vienna, London, and Rome consistently achieved the lowest error percent-
ages across all damage classes and models, with Vienna scenarios showing particularly exceptional performance
(error rates typically below 20% for all metrics). These cities benefited from well-represented building typologies
in the similarity clusters and relatively homogeneous vulnerability patterns that aligned well with the training
data characteristics. Conversely, Granada, Istanbul, and some Barcelona scenarios exhibited the highest predic-
tion errors, particularly for severe damage classes (D4, D5). These challenges appear linked to unique building
stock compositions, complex local site effects, or seismic response characteristics that were underrepresented in
the similarity-based training sets. In some scenarios, Granada’s D4 errors exceeded 130%, indicating difficulty
capturing the transition from moderate to severe damage. Northern and Central European cities (Vienna, Lon-
don, Paris) generally show lower error rates than Mediterranean cities (Granada, Catania, Messina), likely due
to stricter building-code standardization or better representation of those building types in the training data.

Magnitude-Dependent Performance: The analysis revealed systematic relationships between earthquake
magnitude scenarios and prediction accuracy. Lower-magnitude scenarios (M = 6.0–6.5) generally yielded more
accurate predictions, with median error percentages 15%–20% lower than higher-magnitude scenarios (M =
7.0–7.4). This pattern reflects the greater complexity of damage patterns and secondary effects (such as soil
liquefaction and building interactions) that emerge at higher intensity levels, which are more difficult to capture
through building-specific feature regression. High-magnitude scenarios showed particular challenges in D4 and
D5 damage prediction, with several cities exhibiting error percentages exceeding 100%, suggesting that the
similarity-based approach may need enhanced ground-motion and soil–structure interaction features to fully
capture the physics of severe shaking scenarios.

3.2.3 High-rise versus low-/mid-rise building analysis

Distinguishing building height classes is essential because high-rise and low-/mid-rise structures exhibit different
dynamic responses and fragility characteristics. Following the procedure described in Section 2, ground motion
intensities were converted to EMS-98 macroseismic intensities and class-specific fragility curves (with ductility
parameters as specified in the Methods) were used to estimate damage probabilities at the geocell level. The
direct results indicate a marked difference in severe-damage incidence (D4–D5) by height class. Aggregated
across scenarios, high-rise reinforced concrete buildings (defined here as ≥ 9 stories) show a relatively low
incidence of severe damage, typically on the order of 1–5%. By contrast, mid- and low-rise buildings and older
stocks exhibit substantially higher severe-damage probabilities, typically in the 15–20% range under comparable
shaking conditions.

The results suggest that modern building codes and construction practices—where implemented and en-
forced—substantially reduce the probability of catastrophic damage in tall buildings for scenarios with M ≳ 6.0.
Nonetheless, some vulnerability remains even for new buildings under specific local site or design conditions.
Accordingly, land-use and development policies should explicitly incorporate seismic-risk layers to guide safe
vertical growth and densification.

3.2.4 Overall phase-2 results and inverse planning applications

The Phase 2 results show that similarity-guided machine learning can provide reliable predictions of damage
and economic loss when urban characteristics are well represented in the training data. Strong performance
in economic loss prediction offers a robust basis for policy, emergency planning, and infrastructure investment.
However, variability across damage classes and cities underscores the need for careful similarity threshold selection
and balanced training data. The superior accuracy of economic loss over individual damage classes suggests that
the aggregative approach effectively captures overall risk while smoothing uncertainties, making the framework
well suited for regional planning where total impact estimates are more critical than building-level classifications.

Our framework enables “inverse” planning: persistent D4–D5 predictions across multiple scenarios—even
with updated codes—can trigger strategic relocation decisions. As demonstrated in the UDENE Türkiye case,
consistent high-rise damage accumulation supports evaluation of partial or full site relocation away from active
faults. The similarity-based method identifies analog cities with relocation precedents, and economic-loss esti-
mates permit cost–benefit comparisons between large-scale retrofitting and targeted redevelopment, shifting the
tool from reactive assessment to proactive, resilience-focused planning.



4. CONCLUSION

A two-phase, physics-informed machine-learning framework uses similarity-based clustering to decouple haz-
ard from vulnerability and produce transferable damage and economic-loss predictions across 16 European–
Mediterranean cities and 48 scenarios. The similarity step identifies meaningful cross-regional analogs, enabling
Phase 2 localized models that perform especially well for aggregated economic loss (median R2 ≈ 0.93, error
< 30% in most scenarios), while damage-class predictions are robust for D3 but more variable for rarer D4/D5
outcomes. Findings emphasize the dominant role of exposure and urban context: land use, population density,
near-surface conditions (e.g., VS30), and building codes largely determine resilience in regions with Mw ≳ 6.0.
Similarity patterns are magnitude-dependent—many cities show strong self-similarity (supporting magnitude-
scaling), whereas high-intensity events often reveal universal failure modes that reduce local distinctiveness. The
framework is RISK-UE compatible and provides explainable outputs useful for planning, insurance, and “inverse”
applications (e.g., targeted retrofits or relocation analysis). Remaining limitations include training-data biases,
underrepresentation of atypical building stocks, and limited treatment of dynamic soil–structure interaction.
Future work should narrow uncertainty bounds by improving exposure data, integrating dynamic vulnerabil-
ity features, and enhancing extreme-event modeling. Overall, the method offers a scalable, practical tool for
risk-informed urban planning by linking physics-based hazard modeling with data-driven, similarity-guided pre-
diction.
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Table 5: Performance metrics of Random Forest model for seismic damage assessment across different damage
states (D3, D4, D5) and economic loss prediction.

Scenario
D3 Damage D4 Damage D5 Damage Economic Loss

R² RMSE Error% R² RMSE Error% R² RMSE Error% R² RMSE Error%

ATH6.5 0.855 45.45 30.81 0.900 9.55 42.96 0.934 0.096 91.11 0.955 38.10 15.94

ATH6.0 0.935 38.11 130.13 0.843 10.22 236.94 0.923 0.320 528.48 0.953 44.12 83.19
ATH7.0 0.988 8.06 41.76 0.961 8.85 41.43 0.989 0.268 46.91 0.971 16.34 33.51
BCN6.5 0.510 12.75 33.47 0.886 1.90 25.08 0.798 0.042 27.67 0.667 26.01 21.06
BCN6.8 0.589 11.87 35.49 0.650 1.21 37.25 0.789 0.022 46.17 0.897 15.86 25.86
BCN6.0 0.908 20.32 168.90 0.820 2.08 368.98 0.937 0.015 291.99 0.928 39.51 85.03
CTA6.5 0.860 11.41 26.75 0.725 5.85 39.15 0.926 0.193 39.55 0.882 16.46 12.51
CTA6.0 0.889 4.47 37.00 0.780 0.134 71.48 0.842 0.004 63.01 0.796 18.24 28.76
CTA7.4 0.965 24.77 33.46 0.980 3.18 160.17 0.969 0.260 258.28 0.971 28.13 24.55
GRX6.5 0.619 8.01 52.12 0.263 4.49 51.56 0.978 0.008 80.69 0.549 9.90 23.78
GRX6.0 0.766 3.16 30.81 0.325 0.564 85.86 - - - 0.975 3.06 41.25
GRX7.4 0.689 8.37 123.23 0.732 0.780 139.01 0.036 9.997 78.78 0.912 9.997 78.78
IST6.5 0.902 28.52 101.92 0.676 10.95 206.70 0.953 0.101 2875.84 0.921 40.61 46.29
IST6.0 0.640 10.04 91.22 0.661 0.388 108.91 - - - 0.761 19.69 54.34
IST7.4 0.969 10.93 56.82 0.839 13.83 61.74 0.747 0.914 84.30 0.931 25.43 57.95
LIS6.5 0.937 12.90 30.82 0.948 0.789 23.69 0.958 0.031 697.24 0.901 29.52 38.69
LIS6.0 0.919 3.32 77.79 0.941 0.191 119.71 - - - 0.931 9.51 75.50
LIS7.4 0.961 23.63 53.15 0.894 7.00 659.18 0.971 0.697 3678.72 0.982 21.01 41.62
LON5.8 0.984 28.39 12.67 0.983 5.77 15.15 0.924 0.925 20.41 0.986 34.21 7.89
LON6.5 0.982 18.77 31.82 0.983 3.83 39.36 0.918 0.476 43.92 0.978 27.59 26.85
LON6.0 0.990 20.14 14.39 0.965 9.15 17.88 0.837 1.307 23.89 0.991 25.09 12.46
AGP6.5 0.947 3.35 31.55 0.763 0.648 25.89 0.852 0.012 29.34 0.943 13.88 18.32
AGP6.0 0.649 0.690 28.04 0.723 0.080 28.19 - - - 0.947 0.884 28.72
AGP7.0 0.806 26.85 29.00 0.924 0.535 29.61 0.617 0.030 37.64 0.895 38.88 19.71
MES6.5 0.966 3.41 15.46 0.870 3.02 31.05 0.982 0.227 31.74 0.901 9.19 29.57
MES6.0 0.719 14.88 22.38 0.702 2.31 48.56 0.592 0.065 34.89 0.795 24.86 16.63
MES7.4 0.918 35.71 25.74 0.868 9.33 36.10 0.726 1.247 50.96 0.918 45.97 20.96
NAP6.5 0.934 36.17 18.98 0.976 7.47 24.82 0.906 0.866 38.31 0.941 41.71 18.25
NAP6.0 0.928 8.78 14.65 0.930 1.38 29.25 0.866 0.248 67.10 0.893 22.38 8.91
NAP7.2 0.953 31.10 16.44 0.861 14.54 24.47 0.849 1.929 35.24 0.947 44.06 14.69
NCE6.5 0.861 48.46 28.27 0.729 15.78 38.55 0.621 2.576 27.21 0.896 56.14 20.70
NCE6.8 0.946 49.51 23.56 0.883 13.00 22.35 0.817 1.382 24.93 0.897 93.45 21.20
NCE6.0 0.768 63.94 29.65 0.795 15.40 35.60 0.355 2.187 146.28 0.875 66.89 23.97
PMO6.5 0.968 10.88 24.95 0.605 18.76 36.88 1.097 16.87 20.18 0.967 16.87 20.18
PMO6.0 0.974 6.14 74.86 0.805 9.58 210.21 0.870 0.224 905.43 0.974 9.70 28.60
PMO7.0 0.687 55.33 36.10 0.657 24.12 44.13 0.792 0.208 62.10 0.792 60.66 28.99
PAR4.9 0.835 1.07 32.27 0.722 0.162 68.21 - - - 0.762 4.98 28.68
PAR6.5 0.937 51.72 19.04 0.924 14.66 17.89 0.825 1.363 26.12 0.974 41.83 7.69
PAR6.0 0.988 15.92 48.65 0.943 6.47 271.06 0.956 0.401 688.88 0.987 21.99 35.30
ROM6.5 0.981 13.00 15.05 0.930 6.67 8.90 0.965 0.147 12.03 0.977 22.76 10.44
ROM6.7 0.937 24.52 15.37 0.815 7.53 23.67 0.969 0.260 25.32 0.977 19.97 11.67
ROM6.0 0.843 10.70 28.84 0.954 1.10 29.45 0.665 0.034 40.10 0.903 15.27 19.36
VIE6.1 0.961 16.83 10.74 0.947 8.14 11.35 0.989 0.232 10.87 0.959 21.11 6.19
VIE6.5 0.967 14.47 8.69 0.987 1.69 9.86 0.982 0.413 16.65 0.965 20.90 8.95
VIE7.0 0.973 24.07 24.90 0.864 9.22 32.64 0.931 0.696 60.89 0.980 27.67 17.17
VRC6.5 0.532 6.74 5.07 0.861 0.429 11.00 0.929 0.023 19.11 0.880 3.31 6.66
VRC6.0 0.920 1.48 5.28 0.971 0.117 8.06 - - - 0.843 6.46 4.60
VRC7.4 0.895 5.06 50.44 0.912 0.823 77.06 0.960 0.015 86.07 0.967 9.04 28.32



Table 6: Performance metrics of Gradient Boosting model for seismic damage assessment across different damage
states (D3, D4, D5) and economic loss prediction.

Scenario
D3 Damage D4 Damage D5 Damage Economic Loss

R² RMSE Error% R² RMSE Error% R² RMSE Error% R² RMSE Error%

ATH6.5 0.8993 37.8770 24.81 0.9422 7.2674 23.98 0.8389 0.1502 69.07 0.9448 42.0943 21.38

ATH6.0 0.9367 37.5143 134.60 0.7357 13.2536 189.57 0.7422 0.5861 513.25 0.9680 36.3906 90.16
ATH7.0 0.9788 10.4833 36.58 0.9690 7.9173 32.83 0.9858 0.3099 38.97 0.9774 14.4213 30.12
BCN6.5 20.3840 1.1580 35.61 0.9578 1.1580 35.61 0.7915 0.0422 21.77 0.1469 41.6191 32.10
BCN6.8 0.6670 10.6775 28.01 0.6758 1.1653 29.36 0.5563 0.0322 31.63 0.9258 13.4659 22.07
BCN6.0 0.9508 14.8260 165.64 0.7778 2.3107 329.16 0.8979 0.0195 150.60 0.9508 32.6192 88.28
CTA6.5 0.8550 11.6056 30.80 0.7850 5.1721 57.08 0.9426 0.1704 87.68 0.9088 14.4641 24.54
CTA6.0 0.8723 4.7927 37.51 0.8490 0.1105 44.43 0.8625 0.0040 73.49 0.8200 17.1242 31.69
CTA7.4 0.9738 21.3987 45.22 0.9816 3.0468 97.37 0.9580 0.3013 392.62 0.9795 23.8591 43.60
GRX6.5 0.5270 8.9257 49.89 0.3363 4.2584 34.90 0.9254 0.0153 69.35 0.8325 6.0323 39.27
GRX6.0 0.8195 2.7735 73.06 0.5176 0.4764 84.65 - - - 0.9126 5.7426 38.64
GRX7.4 0.7926 6.8338 57.65 0.7927 0.6866 116.52 0.4691 0.0252 167.74 0.8989 10.7206 36.36
IST6.5 0.9727 15.0698 62.32 0.7392 9.8197 75.16 0.9564 0.0965 2201.62 0.9751 22.8038 41.59
IST6.0 0.7005 9.1618 85.72 0.6853 0.3738 126.39 - - - 0.8016 17.9321 51.50
IST7.4 0.9580 12.6288 60.27 0.8372 13.9256 66.22 0.8574 0.6867 106.13 0.9480 22.1486 58.45
LIS6.5 0.9113 15.2572 31.61 0.8929 1.1272 47.70 0.9408 0.0371 594.12 0.8846 31.8866 30.46
LIS6.0 0.8959 3.7594 70.39 0.9411 0.1913 125.33 - - - 0.9263 9.8240 59.65
LIS7.4 0.9780 17.6874 45.04 0.9141 6.3068 548.16 0.9538 0.8855 3780.36 0.9721 26.2400 47.75
LON5.8 0.9891 23.6633 24.92 0.9776 6.5176 33.11 0.8012 1.4912 57.94 0.9911 27.4416 14.94
LON6.5 0.9807 19.2770 26.06 0.9815 3.9879 41.26 0.8024 0.7375 42.63 0.9872 21.2520 22.94
LON6.0 0.9853 24.3897 17.73 0.9577 10.0773 22.39 0.9246 0.8880 27.73 0.9886 28.1794 14.84
AGP6.5 0.7241 7.6029 43.05 0.6751 0.7586 48.24 0.9615 0.0063 36.63 0.8809 20.0346 30.91
AGP6.0 0.8973 0.3734 28.11 0.6890 0.0846 34.51 - - - 0.9516 0.8429 23.21
AGP7.0 0.8020 27.0977 24.49 0.9173 0.5566 35.69 0.8545 0.0184 36.71 0.9276 32.2494 24.68
MES6.5 0.9560 3.9046 19.06 0.9526 1.8224 31.30 0.9874 0.1869 37.39 0.9428 6.9766 25.75
MES6.0 0.7824 13.0830 30.47 0.7589 2.0799 43.62 0.7500 0.0507 43.74 0.8465 21.5314 25.12
MES7.4 0.9672 22.5495 23.08 0.8999 8.1224 37.34 0.7495 1.1929 45.25 0.9574 33.0260 24.28
NAP6.5 0.9548 29.8057 23.03 0.9691 8.5086 45.10 0.9844 0.3537 68.53 0.9511 38.0380 24.04
NAP6.0 0.9514 7.2186 29.09 0.9318 1.3611 57.42 0.9292 0.1800 103.30 0.9030 21.3342 18.28
NAP7.2 0.9735 23.3508 19.21 0.8200 16.5553 29.12 0.8981 1.5818 36.62 0.9736 31.0699 16.53
NCE6.5 0.8600 48.5739 39.73 0.6766 17.2467 51.60 0.7063 2.2667 49.63 0.8925 57.0231 27.78
NCE6.8 0.9404 51.7850 24.89 0.9461 8.8198 23.89 0.8034 1.4322 39.76 0.9235 80.7182 17.03
NCE6.0 0.8333 54.2427 41.53 0.8901 11.2659 68.68 0.4927 1.9397 334.41 0.9193 53.6502 31.55
PMO6.5 0.9631 11.6093 27.33 0.6248 18.2936 40.29 2.0096 15.2607 29.26 0.9730 15.2607 29.26
PMO6.0 0.9604 7.5597 37.19 0.7975 9.7579 60.03 0.7796 0.2915 227.27 0.9536 12.9046 34.92
PMO7.0 0.7078 53.4938 36.49 0.6895 22.9514 45.27 0.6883 0.2552 64.48 0.8140 57.3634 27.98
PAR4.9 0.6499 1.5592 50.79 0.6167 0.1900 93.69 - - - 0.8075 4.4794 42.34
PAR6.5 0.9720 34.3554 15.55 0.9164 15.3527 20.52 0.8880 1.0892 26.67 0.9864 30.3728 16.47
PAR6.0 0.9901 14.6426 41.23 0.9658 5.0260 271.74 0.9854 0.2313 784.37 0.9901 19.1282 28.08
ROM6.5 0.9572 19.3870 20.98 0.9247 6.9353 15.55 0.9264 0.2146 19.24 0.9771 22.5874 18.52
ROM6.7 0.9284 26.2241 20.41 0.8652 6.4256 20.72 0.9811 0.2016 21.92 0.9732 21.5411 14.96
ROM6.0 0.8539 10.3046 33.88 0.9407 1.2536 36.11 0.6818 0.0329 48.66 0.8543 18.7353 29.16
VIE6.1 0.9790 12.3921 18.91 0.9543 7.5632 26.63 0.9839 0.2862 33.29 0.9759 16.2401 20.72
VIE6.5 0.9664 14.5912 17.48 0.9741 2.3613 13.41 0.9650 0.5747 13.76 0.9567 23.2378 17.46
VIE7.0 0.9791 21.0548 28.26 0.8797 8.6786 31.09 0.9659 0.4876 50.25 0.9873 22.0208 21.45
VRC6.5 0.6034 6.2046 41.56 0.8356 0.4669 50.57 0.9137 0.0257 97.65 0.9582 1.9527 35.92
VRC6.0 0.9559 1.0972 132.04 0.9618 0.1330 148.41 - - - 0.9338 4.1978 57.12
VRC7.4 0.9429 3.7316 54.20 0.9404 0.6756 75.31 0.9389 0.0184 95.23 0.9695 8.6398 35.88
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