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ABSTRACT

Urban heat island (UHI)1 effects present significant challenges for sustainable urban development. Within the
UDENE2 project, a deep-learning framework was established to model land surface temperature (LST) from
remotely sensed urban indices, assess the effectiveness of green and blue infrastructure interventions such as
linked park systems, and identify thermally analogous regions across cities. A compact U-Net3 architecture
was trained on six spectral indices obtained from Google Earth Engine4 (NDVI,5 NDBI,6 NDWI,7 SAVI,8 IBI,9

EVI10), with corresponding LST values serving as the prediction target. The primary case study was conducted
on 50×50-pixel windows at 30 m resolution from İstanbul, with further validation in San Francisco and Abu
Dhabi to ensure robustness across different climatic contexts. To enhance interpretability and minimize spatial
autocorrelation, a spatial block partitioning strategy was employed, and a multi-method sensitivity analysis
was implemented. This included channel ablation, input perturbation, spatial occlusion, and gradient-based
explainability techniques. Results consistently highlighted the dominant cooling influence of vegetation indices
(EVI, SAVI, NDVI), with preservation of existing green areas demonstrating greater impact than equivalent new
additions. Context-dependent effects were also observed, particularly for NDWI, reflecting complex interactions
between urban water features and the surrounding built environment. Overall, the proposed framework provides
robust and interpretable evidence to support urban planners in the design and strategic placement of green and
blue infrastructure for effective UHI mitigation across diverse urban landscapes.

Keywords: Urban Heat Island Mitigation, Sensitivity Analysis, Similarity Analysis, Environmental Remote
and Proximal Sensing

1. INTRODUCTION

The urban heat island (UHI) effect represents one of the most pressing environmental challenges facing contem-
porary cities, with urban areas experiencing temperatures 1-3°C higher than surrounding rural regions, and in
extreme cases, differences exceeding 10°C. This phenomenon, first comprehensively analyzed by Oke11 through
its energetic basis, results from the complex interplay of modified surface materials, altered urban geometry, re-
duced vegetation cover, and anthropogenic heat release. As global urbanization accelerates, with over 68% of the
world’s population expected to reside in cities by 2050, understanding and mitigating UHI effects has become
critical for sustainable urban development, public health, and climate adaptation strategies. Two decades of
urban climate research have evolved from simple observational studies to sophisticated modeling approaches,12

with remote sensing emerging as a fundamental tool for monitoring urban thermal dynamics. Weng13 demon-
strated how thermal infrared remote sensing enables systematic observation of urban surface temperatures across
multiple spatial and temporal scales, providing unprecedented insights into UHI patterns. Subsequently, global
analyses have revealed the widespread nature of this phenomenon, with Peng et al.14 documenting UHI effects
across 419 global cities and Manoli et al.15 establishing that UHI magnitude is largely predictable based on cli-
mate and population factors, particularly in arid and temperate regions. These foundational studies underscore
both the universality of UHI challenges and the potential for systematic, data-driven mitigation strategies.

The role of green and blue infrastructure in mitigating UHI effects has been extensively documented through
empirical studies. Urban parks have been shown to function as ”cool islands,” with temperature reductions
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ranging from 2-8°C compared to surrounding built environments.16,17 The cooling intensity depends not only
on park size but also on spatial configuration, with Lin and Lin18 demonstrating that the arrangement and
distribution of green spaces significantly influence their collective cooling effect. Gunawardena et al.19 syn-
thesized evidence showing how vegetation’s evapotranspiration and water bodies’ high heat capacity contribute
synergistically to urban cooling, while Norton et al.20 provided frameworks for prioritizing green infrastructure
deployment based on population density, existing vegetation, and temperature patterns. These studies collec-
tively support the concept of linked park systems as a strategic approach to urban heat mitigation. Remote
sensing-based assessments have consistently identified vegetation indices as primary indicators of UHI intensity.
The Normalized Difference Vegetation Index (NDVI) shows strong negative correlation with land surface temper-
ature (LST), while the Normalized Difference Built-up Index (NDBI) exhibits positive correlation.21–23 Cetin et
al.21 demonstrated these relationships across multiple districts in Kayseri, Turkey, establishing methodological
benchmarks for index-based UHI analysis. Similarly, Kikon et al.22 confirmed these patterns at kilometer-grid
scales, providing empirical validation for using spectral indices as proxies for urban thermal conditions. The
consistent identification of vegetation indices—particularly NDVI, Enhanced Vegetation Index (EVI), and Soil-
Adjusted Vegetation Index (SAVI)—as dominant cooling factors across diverse geographic contexts underscores
their fundamental role in urban thermal regulation.

The advent of deep learning has revolutionized remote sensing applications, offering unprecedented capa-
bilities for analyzing complex spatial patterns and relationships.24,25 Convolutional Neural Networks (CNNs),
particularly U-Net architectures originally developed for biomedical image segmentation, have proven exception-
ally effective for pixel-wise prediction tasks in Earth observation.26 Recent advances in deep learning for Earth
system science emphasize not only predictive accuracy but also process understanding and interpretability.27,28

The application of these techniques to LST estimation has evolved rapidly, with Bouaziz et al.29 surveying
spatio-temporal fusion approaches including U-Net variants with attention mechanisms and temporal modules.
Kustura et al.30 demonstrated that combining multiple data sources—including Sentinel-2 indices, land cover,
and meteorological variables—within deep learning frameworks significantly improves LST estimation accuracy,
validating multi-channel approaches for capturing urban thermal complexity. However, despite these technologi-
cal advances, critical gaps remain in translating deep learning predictions into actionable urban planning insights.
While models achieve high predictive accuracy, understanding the causal relationships between urban features
and temperature patterns remains challenging. Recent work has begun addressing this through explainable AI
approaches, with Huang et al.31 employing XGBoost32 with SHAP33 values to quantify per-feature contributions
to LST, identifying NDVI as the top cooling driver across urban districts. Syeda et al.34 demonstrated how
machine learning can integrate physical and social determinants to develop zone-specific mitigation strategies,
emphasizing the need for interpretable models that support evidence-based policy. These studies highlight the
importance of moving beyond black-box predictions toward models that provide mechanistic insights for urban
planning applications.

The spatial heterogeneity of urban environments presents additional challenges for model generalization and
transferability. Urban thermal patterns vary significantly across climatic zones, urban morphologies, and de-
velopment intensities.14,15 Models trained on single cities often fail to generalize to different urban contexts,
limiting their practical applicability. Furthermore, the complex interactions between urban features—such as the
context-dependent effects of water bodies that can either cool through evaporation or warm through heat stor-
age depending on surrounding conditions—require sophisticated analytical approaches that capture non-linear
relationships while maintaining interpretability. Within this context, our research addresses these challenges
through a comprehensive deep learning framework that combines predictive accuracy with causal understanding.
We present a compact U-Net architecture trained on six carefully selected spectral indices (NDVI, NDBI, NDWI,
SAVI, IBI, EVI) to predict LST at 30-meter resolution, enabling fine-grained analysis of urban thermal patterns.
Our approach uniquely integrates multiple sensitivity analysis methods—including ablation studies, perturba-
tion analysis, spatial occlusion, and gradient-based explainability techniques—to systematically examine the
causal relationships between urban features and temperature patterns. This multi-method framework provides
statistically robust, interpretable evidence for the effectiveness of green and blue infrastructure interventions,
particularly linked park systems, in mitigating UHI effects.

The primary contributions of this work are fourfold: (1) We develop a spatially-aware deep learning model that
maintains high predictive accuracy while preventing spatial autocorrelation through strategic block partitioning;



(2) We implement a comprehensive sensitivity analysis framework that quantifies the individual and interactive
effects of urban features on LST, providing mechanistic insights beyond correlation; (3) We validate our approach
across climatically diverse cities (San Francisco, İstanbul, Abu Dhabi); and (4) We translate model insights
into actionable planning recommendations, quantifying the relative benefits of preserving existing green spaces
versus creating new ones, and identifying optimal locations for green infrastructure deployment. By bridging the
gap between advanced deep learning capabilities and practical urban planning needs, this research provides a
foundation for evidence-based strategies to combat UHI effects through strategic green and blue infrastructure
development. Our findings offer urban planners and policymakers quantitative tools to evaluate and optimize
heat mitigation interventions, supporting the development of more resilient and sustainable urban environments
in the face of ongoing climate change.

2. METHODOLOGY

Our methodology employed a multi-city approach to ensure robust model generalization across diverse climatic
and urban contexts. San Francisco served as the primary case study due to its well-documented UHI patterns and
Mediterranean climate characteristics. To validate model transferability, we extended our analysis to İstanbul,
Turkey (temperate oceanic climate with continental influences) and Abu Dhabi, UAE (hot desert climate),
representing distinct climatic zones and urban morphologies that collectively span a broad spectrum of global
urban environments. All remotely sensed data were acquired through Google Earth Engine (GEE),4 leveraging
its comprehensive archive of Landsat 8 imagery with 30-meter spatial resolution. The temporal window for
data collection spanned 2013-2025, with cloud-free images selected during peak summer months (June-August)
to capture maximum UHI intensity. For each study area, we systematically sampled 50×50 pixel windows
at the native 30-meter resolution to preserve fine-scale urban thermal patterns while ensuring computational
tractability, excluding tiles that were degenerate (i.e., containing entirely black or white channels) or that did
not conform to the required 50×50 shape.

2.1 Spectral Index Calculation and Feature Selection

We derived six spectral indices for each sampled window chosen for their demonstrated relationships to urban
thermal dynamics and for their complementary ability to represent vegetation, built surfaces, soil effects, and sur-
face water. Vegetation indices capture photosynthetic activity and canopy structure; the Normalized Difference
Vegetation Index (NDVI) follows the conventional form:

NDVI =
NIR− Red

NIR + Red
, (1)

while the Enhanced Vegetation Index (EVI) augments NDVI by accounting for atmospheric scattering and
canopy background:

EVI = 2.5 · NIR− Red

NIR + 6 · Red− 7.5 · Blue + 1
. (2)

To reduce soil-brightness effects in sparsely vegetated pixels we used the Soil-Adjusted Vegetation Index (SAVI)
with the commonly used soil correction factor L:

SAVI =

(
NIR− Red

NIR + Red + L

)
× (1 + L), L = 0.5. (3)

Indices that emphasize impervious and built surfaces complement the vegetation measures. The Normalized
Difference Built-up Index (NDBI) highlights built-up areas by contrasting short-wave infrared and near-infrared
reflectances:

NDBI =
SWIR−NIR

SWIR + NIR
. (4)

We also computed the Index-Based Built-up Index (IBI) to provide a normalized indicator of built cover that
combines SWIR, NIR, Red and Green information; written compactly:

IBI =
2 · SWIR1

SWIR1+NIR −
(

NIR
NIR+Red + Green

Green+SWIR1

)
2 · SWIR1

SWIR1+NIR +
(

NIR
NIR+Red + Green

Green+SWIR1

) . (5)



Surface water features were captured with the Normalized Difference Water Index (NDWI):

NDWI =
Green−NIR

Green + NIR
, (6)

which is sensitive to open water and moisture-related signatures that can modulate local thermal behavior.

All indices were computed from atmospherically corrected surface reflectances and resampled to the com-
mon 30 m grid of analysis; band names refer to the usual multispectral channels (Blue, Green, Red, NIR,
SWIR/SWIR1). Land surface temperature (LST), used as the model target, was retrieved from Landsat 8 ther-
mal infrared bands via the radiative transfer approach with atmospheric correction parameters obtained from
NCEP reanalysis fields. Where available, LST retrievals were validated against in-situ temperature measurements
to verify absolute accuracy and to calibrate any systematic offsets prior to model training.

2.2 Spatial Block Partitioning Strategy

To address spatial autocorrelation—a critical challenge in geospatial machine learning—we implemented a spatial
block partitioning strategy rather than random sampling. The study regions were systematically divided into
non-overlapping spatial blocks, with each block containing multiple 50×50 pixel windows. Blocks were then
randomly assigned to training (70%), validation (10%), and testing (20%) sets, ensuring that spatially proximate
samples were grouped within the same partition. This approach prevents data leakage between training and
testing sets, where spatial proximity could artificially inflate model performance metrics. The block size was
optimized to balance spatial independence while maintaining sufficient sample diversity within each partition.
This methodology ensures that model evaluation reflects true generalization capability to unseen geographic
areas rather than interpolation within spatially correlated regions.

2.3 Dataset Composition and Preprocessing

Following the spatial block partitioning and quality control procedures, the final datasets comprised windows
distributed across the three study cities as detailed in Table 1. The sampled windows underwent preprocessing
to eliminate samples affected by clouds, technical issues, and other distortion artifacts. Additionally, windows
corresponding to regions outside the scope of urban development were systematically excluded—such as extensive
desert areas in Abu Dhabi—to maintain focus on urban thermal dynamics and ensure model relevance to built
environment applications.

Table 1: Per-city dataset sizes and train/validation/test splits (post-filtering).

City Total windows Training Validation Testing

İstanbul 40,828 28,513 4,098 8,217

San Francisco 3,352 2,329 337 686

Abu Dhabi 13,821 9,675 1,382 2,764

Total 58,001 40,517 5,817 11,667

These city-wise test sets were held out for final sensitivity analyses and statistical evaluation to ensure un-
biased assessment of causal relationships. The training and validation partitions were used exclusively during
model development (training, hyperparameter tuning, and early stopping), while all figures, metrics and statis-
tical summaries reported in the Results section are computed on the held-out test data shown in Table 1. The
substantial difference in sample sizes across cities reflects variations in urban extent, data availability, and the
effectiveness of quality control procedures in different climatic contexts.



2.4 U-Net Architecture Design

We implemented a compact U-Net tailored for six-channel input and per-pixel Land Surface Temperature (LST)
regression, designed to preserve fine spatial detail while remaining computationally efficient and interpretable.
The encoder part consists of three resolution stages; each stage applies two successive 3 × 3 convolutions (with
ReLU activations35 and batch normalization36) and then reduces spatial resolution with a 2×2 max-pool. Filter
counts increase with depth (64 → 128 → 256) so that the encoder progressively captures higher-level features
while retaining locality through the paired convolutions. The bottleneck uses two 3 × 3 convolutions with 512
filters, each followed by batch normalization and ReLU, to learn complex spatial relationships efficiently.

The decoder component of our U-Net symmetrically reconstructs spatial detail through a series of learned
upsampling operations. Each stage of the decoder begins with a 2×2 transposed convolution, which progressively
increases the spatial resolution while simultaneously reducing the feature dimensionality (with 256, 128, and 64
filters in successive stages). To enrich the upsampled representation, the output of each transposed convolution
is concatenated with the corresponding encoder feature maps via skip connections,37 thereby restoring spatial
context that might otherwise be lost during downsampling. This concatenated tensor is subsequently refined
through two successive convolutional blocks, each consisting of a 3×3 convolution, batch normalization, and ReLU
activation, which together enhance the representational power of the network. To ensure that skip-connected
encoder features align precisely with decoder outputs, we implemented a custom tensor-cropping mechanism
that removes minor spatial mismatches introduced by pooling and upsampling operations. This guarantees a
strict correspondence between encoder and decoder features across resolution levels. Finally, a 1×1 convolution
projects the refined decoder output into a single continuous-valued channel. This channel represents the land
surface temperature (LST) in degrees Celsius for each pixel. The model uses a linear activation function, which
is suitable for the regression-based prediction of temperature values. Each predicted pixel corresponds to a 30x30
meter region in the real world.

To stabilize and speed up training, every convolution is followed by batch normalization. The design also uses
symmetric skip connections and paired convolutions to preserve spatial context for accurate predictions. The
network was trained with the Adam optimizer38 (initial learning rate 1× 10−4) for up to 50 epochs, with early
stopping triggered by validation loss to avoid overfitting. Mean squared error was used as the primary training
objective, while complementary diagnostics (MAE, RMSE) were monitored during training and evaluation. The
described architecture is illustrated in Figure 1.

2.5 Sensitivity Analysis Framework

Our sensitivity analysis integrated five complementary methodological approaches, providing a robust and multi-
faceted understanding of the causal relationships between urban features and thermal patterns captured by the
U-Net model.

2.5.1 Channel ablation analysis

The ablation study systematically evaluated each spectral index’s contribution by selectively removing individual
channels while maintaining all other inputs constant. For each of the six indices, a modified input was created
by setting the target channel values to zero across all spatial locations within the 50×50 window. The resulting
LST predictions were compared against baseline predictions using the complete six-channel input.

The Mean Difference (MD) metric quantified the impact of each channel’s removal:

MD =
1

n

n∑
i=1

(LSTmodified,i − LSTbaseline,i) (7)

where n is the total number of pixels in the test dataset and i denotes the spectral channel being ablated.
Positive MDi values indicate that removing channel i leads to higher predicted temperatures (warming effect),
while negative values correspond to cooling effects.



Figure 1: Compact U-Net architecture for per-pixel LST regression: six-channel input → three encoder stages
(64→128→256 filters, two 3×3 conv + BN + ReLU per stage, 2×2 max-pooling) → 512 filter bottleneck →
symmetric decoder (2×2 transposed convolutions with 256, 128, 64 filters, skip connections) → 1×1 linear
output to a single LST channel.

2.5.2 Perturbation-based sensitivity assessment

To evaluate model stability and the magnitude of its responses to subtle urban feature changes, we conducted
a controlled perturbation analysis using three values of ε (ε ∈ {0.01, 0.05, 0.1}). For each spectral index and
perturbation level, we generated modified inputs by either incrementing or decrementing:

c+ε = c+ ε · c (8)

c−ε = c− ε · c (9)

where c denotes the original channel value, c+ε represents the perturbed value obtained by incrementing c
with a fraction ε, and c−ε represents the perturbed value obtained by decrementing c with the same fraction.

This procedure simulates realistic scenarios such as gradual vegetation growth or decline over time, as well
as incremental urban development changes. Sensitivity was quantified using the same MD metric, thereby
providing insights into both the direction and magnitude of predicted temperature responses to small-scale
urban modifications.

2.5.3 Statistical significance framework

All sensitivity analyses were subjected to rigorous statistical validation to support robust inference. We adopted
the following hypothesis-testing framework:

H0: No significant change in model output due to channel modification.

H1: A significant change in model output due to channel modification.

The significance level was set to α = 0.01. When multiple channels or comparisons were tested, reported
p-values were adjusted to control the false discovery rate using the Benjamini–Hochberg procedure,39 unless
otherwise stated.



Parametric tests

• Two-sample (or paired, where appropriate) t-tests comparing the modified and baseline prediction distri-
butions.

• Cohen’s d40 for effect-size quantification:

d =
µ1 − µ2

σpooled
, (10)

where the pooled standard deviation is

σpooled =

√
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2
. (11)

Here µk, σk, and nk denote the sample mean, sample standard deviation and sample size for group k ∈
{1, 2}.

Non-parametric validation

• Wilcoxon41 signed-rank tests for paired comparisons that do not rely on distributional assumptions.

Robust estimation

• Bootstrap confidence intervals (95%) for MD estimates computed with B = 1,000 bootstrap resamples.

• Bias-corrected and accelerated (BCa) intervals were used to improve interval accuracy in the presence of
skewness or bias.

2.5.4 Spatial occlusion analysis

Our spatial occlusion analysis adapts the occlusion-sensitivity approach of Zeiler and Fergus42 to multi-channel
remote-sensing input. Specifically, we slide a 5 × 5 occlusion patch across each 50 × 50 input window, zeroing
the patch simultaneously across all six channels at every location. For each occlusion position we compute the
change in the model’s per-pixel LST predictions and then aggregate those changes across the entire test set to
produce a population-level spatial sensitivity map. This procedure highlights the local regions whose removal
most strongly alters predicted temperatures, allowing us to identify spatially critical features for downstream
interpretation and intervention planning. Let

X ∈ RC×H×W

denote an input sample with C = 6 channels and H = W = 50. Let the occlusion patch size be k = 5, and let
(p, q) denote the top-left location of the patch with p ∈ {1, . . . ,H − k + 1} and q ∈ {1, . . . ,W − k + 1}. Define
the binary occlusion mask Mp,q ∈ {0, 1}C×H×W by

Mp,q[c, h, w] =

{
1, if h ∈ {p, . . . , p+ k − 1}, w ∈ {q, . . . , q + k − 1}, ∀c,
0, otherwise.

(12)

The occluded input is obtained by zeroing all channels inside the patch:

X(p,q) = X ⊙ (1−Mp,q), (13)

where ⊙ denotes element-wise multiplication.

For each occlusion location (p, q) we compute a sensitivity value ∆p,q as the mean change in model pre-
diction over the test set. Let the test set contain N samples, and let the model produce a per-pixel output



LST(·) ∈ RH×W . Denoting the baseline prediction for test sample t by LST(Xt) and the occluded prediction by

LST(X
(p,q)
t ), we define

∆p,q =
1

n

N∑
t=1

H∑
u=1

W∑
v=1

(
LST

(
X

(p,q)
t

)
u,v

− LST
(
Xt

)
u,v

)
, (14)

where n = N ·H ·W is the total number of output pixels across the test set (here H=W =50). The set of ∆p,q

values forms a spatial sensitivity map of size (H − k + 1) × (W − k + 1) (here 46 × 46). For visualization, this
sensitivity map is optionally upsampled or centered to the original 50× 50 grid to create heatmaps.

The resulting heatmaps visualize the spatial distribution of model sensitivity to local occlusions. Positive
∆p,q values indicate locations where occluding local features increases predicted temperature (warming effect),
while negative values indicate locations where occlusion reduces predicted temperature (cooling effect). This
analysis helps identify local urban elements that most strongly influence modeled thermal patterns and informs
placement of targeted green infrastructure interventions.

2.5.5 Gradient-based explainability methods

We used two complementary gradient-based techniques to probe model behaviour: Gradient-weighted Class
Activation Mapping (Grad-CAM)43 and Integrated Gradients.44 Let F (X) denote the scalar model output (per-
pixel LST may be aggregated e.g. by spatial mean to produce a scalar for Grad-CAM) and let Ak ∈ RH×W be
the k-th feature map from the final convolutional layer with spatial entries Ai,j

k .

Grad-CAM: The importance weight for feature map k is computed as the spatially averaged gradient of the
output with respect to that feature map:

αk =
1

Z

H∑
i=1

W∑
j=1

∂F (X)

∂A i,j
k

, Z = H ×W. (15)

The Grad-CAM heatmap is then obtained by a weighted linear combination of feature maps followed by a ReLU
to retain positive influences:

LGrad-CAM = ReLU

(∑
k

αk Ak

)
. (16)

The resulting map is upsampled to the input resolution for visualization and, if required, normalized across the
dataset for population-level comparisons.

Integrated Gradients: Integrated Gradients attribute each input feature xi by integrating gradients along a
straight-line path from a baseline input x′ (typically the all-zero image) to the input x:

IGi(x) = (xi − x′
i)

∫ 1

0

∂F
(
x′ + α(x− x′)

)
∂xi

dα. (17)

In practice we approximate the integral using m Riemann steps:

IGi(x) ≈ (xi − x′
i)

1

m

m∑
k=1

∂F
(
x′ + k

m (x− x′)
)

∂xi
. (18)

Typical choices use m ∈ {50, 100} to balance accuracy and compute cost.

Aggregation: Both methods were applied per-sample across the full test set and aggregated (e.g. by per-pixel
mean or median and by normalizing maps) to identify consistent spatial and channel-wise patterns of importance
across diverse urban contexts.



2.6 Model Training and Evaluation Protocol

The final dataset comprised 50 × 50 windows drawn from three study cities. The held-out test set contained
city-wise samples as follows: İstanbul (Ntest = 7,549), Abu Dhabi (Ntest = 12,377), and San Francisco (Ntest =
15,000), for a total of Ntest = 34,926 test windows. Spatial partitioning was performed column-wise to maintain
geographic separation between training, validation and test sets. Data ingestion was implemented with a custom
PyTorch Dataset class; numerical anomalies were handled at load-time via torch.nan to num (NaN, +∞, −∞
7→ 0) to preserve tensor consistency during training.

Training configuration: Models were trained with a batch size of 8 using the Adam optimizer with initial
learning rate η0 = 1 × 10−4. We ran up to 50 epochs with early stopping monitored on validation loss; the
checkpoint with the lowest validation RMSE was selected for downstream sensitivity analyses. When necessary,
bilinear interpolation was used to align prediction and ground-truth resolutions. Training and inference were
conducted on GPU when CUDA was available.

Loss function: To accommodate missing target values, we used a masked mean-squared-error loss computed
over valid pixels. Let M denote the set of valid (non-NaN) pixel indices and |M| its cardinality. Then the
masked MSE is

MSEmask =
1

|M|
∑
i∈M

(
ŷi − yi

)2
, (19)

where ŷi and yi are the predicted and ground-truth temperature values for pixel i, respectively. This formulation
ensures loss contributions only from reliable ground-truth measurements.

Evaluation metrics: Model performance was assessed using multiple complementary regression metrics com-
puted over the held-out test set:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2, (20)

MAE =
1

n

n∑
i=1

|ŷi − yi|, (21)

R2 = 1−
∑n

i=1(ŷi − yi)
2∑n

i=1(yi − ȳ)2
, (22)

where n is the number of evaluated pixels (or pixel-aggregates) and ȳ is the mean of the ground-truth values. In
addition to global scores, we report metric breakdowns across temperature bands and across key urban-feature
strata to verify consistent performance across the thermal range and heterogeneous urban contexts.

Model selection and numerical stability: Early stopping, checkpointing, and a cosine annealing learning-
rate scheduler45 were used to avoid overfitting and to stabilize training. NaN detection and masking were enforced
throughout forward and backward passes to prevent propagation of invalid values. Where predictions and labels
required spatial alignment, bilinear resampling was applied prior to metric computation.

3. RESULTS

3.1 Overall model performance

Model performance was assessed on the held-out test sets from Abu Dhabi, İstanbul, and San Francisco. Table 2
reports standard regression metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and the coefficient of determination (R2).



In Abu Dhabi, the model achieved an R2 of 0.7375, indicating that it successfully captured a substantial
portion of the variance in LST. Performance in İstanbul was moderate, with an R2 of 0.4352. By contrast,
results in San Francisco showed a negative R2 value of −0.1483, implying that the model’s predictions were less
accurate than a näıve baseline that predicts the mean LST. This divergence underscores the limitations of direct
model transferability across urban regions with distinct climatic, geographic, and morphological characteristics,
emphasizing the need for context-specific adaptation.

Table 2: Performance of the U-Net model on held-out test sets for each study city.

City Valid Pixels RMSE (°C) MAE (°C) R2

Abu Dhabi 6,188,500 2.78 2.10 0.738

İstanbul 20,542,500 2.50 2.04 0.435

San Francisco 1,715,000 2.54 2.23 −0.148

Qualitative comparisons, presented in Figure 2, illustrate the spatial agreement between ground-truth and
predicted LST maps for representative samples from each city. Predictions for Abu Dhabi and Istanbul closely
matched observed thermal patterns, accurately mapping hotspots over dense built-up areas and cooler zones
associated with parks and water bodies, which was consistent with the quantitative evaluation.

Figure 2: Qualitative comparison of predicted and ground-truth LST maps for representative samples from three
cities (top: İstanbul, middle: Abu Dhabi, bottom: San Francisco). In each row, the U-Net prediction is shown
on the left and the ground-truth map on the right, illustrating the model’s ability to reproduce key urban heat
patterns.



3.2 Sensitivity Analysis Results

To better understand how the model leverages spectral indices in predicting land surface temperature (LST), we
applied our five-method sensitivity analysis framework to the held-out test sets from İstanbul, Abu Dhabi, and
San Francisco. The subsequent sections present results from channel ablation, controlled input perturbations,
statistical significance testing, spatial occlusion, and gradient-based explainability techniques.

3.2.1 Analysis for İstanbul

We evaluated the İstanbul test set (Ntest = 8,217 windows) using five complementary sensitivity analysis methods:
channel ablation, controlled perturbation, statistical testing, spatial occlusion, and gradient-based explainability.
Results quantify the influence of individual spectral indices on per-pixel LST predictions. Reported p-values are
compared against a significance threshold of α = 0.01, with effect sizes given as Cohen’s d. For MD estimates,
bootstrap 95% BCa confidence intervals are also provided.

Channel Ablation: The channel ablation analysis for İstanbul revealed distinct contributions of each spectral
index to LST predictions. Vegetation-related indices had strong cooling effects when removed: EVI showed the
largest impact with a mean difference (MD) of −2.63°C, followed by SAVI (−1.14°C) and NDVI (−0.75°C). The
negative MD values indicate that removing these indices led to higher predicted temperatures, confirming their
cooling influence on the urban thermal environment.

In contrast, built-up indices contributed to warming. IBI had the strongest warming effect with an MD of
+2.87°C, while NDBI showed a moderate cooling effect with an MD of −0.33°C. The differing responses of IBI
and NDBI suggest sensitivity to distinct aspects of urban development patterns. Notably, NDWI displayed a
substantial warming effect when removed (MD +2.75°C), highlighting the significant cooling influence of water
features in İstanbul’s urban landscape.

Perturbation analysis: We applied multiplicative perturbations c 7→ c ± εc with ε ∈ {0.01, 0.05, 0.1} and
measured MD for both + and − perturbations. Table 3 summarizes the average MDs across the test set; detailed
statistical test outputs for each perturbation (t/Wilcoxon, Cohen’s d, bootstrap CI) are provided afterward.

Table 3: İstanbul — Perturbation MDs (average over test set). Positive MD = predicted temperature increases
after the perturbation.

Channel MD+0.01 MD−0.01 MD+0.05 MD−0.05 MD+0.1 MD−0.1

NDVI 0.2922 −0.2678 1.5318 −0.9096 2.9827 −1.3519

NDBI 0.1239 −0.1062 0.7332 −0.3295 1.6151 −0.3331

NDWI −0.3239 0.3614 −1.2372 1.8442 −2.4648 3.9700

SAVI 0.2140 −0.2048 1.0853 −0.8330 2.3270 −1.2088

IBI −0.0314 0.0373 −0.0950 0.2457 −0.0502 0.6385

EVI 0.2837 −0.2699 1.5227 −1.1139 3.4400 −1.7627

Across ε ∈ {0.01, 0.05, 0.1} the model responses scale with perturbation magnitude. Vegetation indices
(NDVI, SAVI, EVI) produce cooling when increased and warming when decreased, with EVI the most sensitive
(up to +3.44◦C at +10%, down to −1.76◦C at −10%) and NDVI showing an approximately linear response
(about −0.27◦C at −1% to +2.98◦C at +10%). Built-up indices are more complex: NDBI behaves roughly
linearly (e.g., ∼ 1.62◦C at +10%, ∼ −0.33◦C at −10%), while IBI is nearly insensitive at ε = 0.01 (∼ ±0.03◦C)
but becomes asymmetric at larger perturbations. NDWI shows the strongest inverse effect (cooling up to −2.46◦C
for +10%, warming up to +3.97◦C for −10%).



Statistical Significance: Perturbations and ablations were evaluated using paired t-tests and Wilcoxon
signed-rank tests. All sensitivity analyses were significant at α = 0.01, with the strongest effects yielding p-
values near machine precision (p ≪ 10−160). Cohen’s d values indicate large effects for vegetation and select
non-vegetation channels. In particular, EVI ablation exhibited the largest vegetation effect (d ≈ −1.75, very
large), followed by SAVI (d ≈ −1.68) and NDVI (approximately d ≈ −1.77). Among non-vegetation indices,
IBI (built-index) reached d ≈ +2.87 and NDWI (water-related) reached d ≈ +2.21. Bootstrap resampling
produced narrow 95% BCa confidence intervals, supporting the stability of these estimates. For example, EVI
ablation: 95% CI = [−2.77, −2.59]K, and IBI ablation: 95% CI = [+2.78, +2.91]K. Parametric (paired t) and
non-parametric (Wilcoxon signed-rank) tests were concordant across channels, reinforcing the robustness of the
inferences.

Perturbation experiments showed monotonic scaling of effect size with perturbation magnitude ε (c 7→ c±εc).
Effect sizes increased rapidly for the strongest channels; for instance, NDVI at ε = 0.1 yielded Cohen’s d ≈ 6.82,
highlighting the model’s high sensitivity to large vegetation changes. Combined with narrow bootstrap intervals
and agreement between parametric and non-parametric tests, these large effect sizes provide strong statistical
support for the causal interpretations from our multi-method sensitivity framework.

Spatial Occlusion: The spatial occlusion analysis revealed that the model’s sensitivity is not uniformly dis-
tributed across the input windows. Sensitivity values ranged from −4.46◦C to +4.74◦C (mean 0.11◦C, std
0.44◦C), indicating substantial spatial variability in feature importance. The slightly positive mean suggests
that occluding most spatial locations tends to increase predicted temperatures modestly, consistent with the
predominance of cooling features such as vegetation and water in typical urban scenes.

The aggregated sensitivity map in Figure 3 highlights hotspots where the model is most sensitive, typically
at land cover transitions such as green space–residential interfaces or water edges, identifying critical locations
for targeted urban heat island mitigation.

Gradient Based Methods: Grad-CAM analysis produced attention maps with a mean activation of 0.17
(SD = 0.23), indicating focused sensitivity on specific spatial regions. Figures 4 and 5 highlight locations most
influencing the model’s temperature predictions. Figure 4 shows the average Grad-CAM map, while Figure 5
presents average Integrated Gradients maps for the six channels, providing interpretable insight into the model’s
decisions.

Integrated Gradients maps across six channels showed a mean attribution of 0.0003 (SD = 0.0032). Vegetation
indices generally indicate cooling, and built-up indices indicate warming, with low magnitude and high spatial
variability reflecting context-dependent urban thermal dynamics. Grad-CAM highlights regions of high occlusion
sensitivity, while Integrated Gradients align with channel-wise perturbation effects.

Figure 3: Aggregated spatial
sensitivity map for İstanbul

from the 5× 5 patch occlusion
analysis.

Figure 4: Aggregated spatial
Grad-CAM sensitivity map for

İstanbul.

Figure 5: Integrated Gradients maps for
İstanbul in a 2× 3 grid: NDVI, NDBI, NDWI

(top) and SAVI, IBI, EVI (bottom).



3.2.2 Analysis for Abu Dhabi

We evaluated the Abu Dhabi test set (Ntest = 2,764 windows) using the same five-method sensitivity analysis
framework applied to İstanbul and San Francisco. The arid climate and distinct urban morphology of Abu
Dhabi yielded markedly different and often counter-intuitive sensitivity patterns, with consistently larger effect
magnitudes across all spectral indices compared to the temperate İstanbul context.

Channel Ablation: The channel ablation analysis in Abu Dhabi revealed a striking pattern: the removal of any
spectral index led to a significant increase in predicted LST, indicating that all six channels were interpreted as
exerting a cooling influence. This suggests that the model may have learned highly context-specific relationships
within the desert environment.

The strongest cooling effects were unexpectedly linked to built-up indices. IBI showed the largest impact
by far (MD = +35.97◦C), followed by NDBI (MD = +22.59◦C). This counter-intuitive result may reflect
the model’s association of these indices with urban features such as building height and self-shading, which
can provide localized cooling in intensely hot conditions. Vegetation indices also exhibited substantial cooling
effects, with SAVI (MD = +16.88◦C) and EVI (MD = +16.81◦C) showing nearly identical magnitudes. NDWI
(MD = +8.89◦C) and NDVI (MD = +4.44◦C) contributed as well, though to a lesser extent.

Perturbation analysis: Table 4 lists the average MDs under multiplicative plus/minus perturbations c 7→
c± εc for ε ∈ {0.01, 0.05, 0.1}.

Table 4: Abu Dhabi — Perturbation MDs (average over test set). Positive MD = predicted temperature increases
after the perturbation

Channel MD+0.01 MD−0.01 MD+0.05 MD−0.05 MD+0.1 MD−0.1

NDVI 2.7427 1.3299 7.6961 3.1211 20.4321 4.2618

NDBI 1.1318 1.7688 4.2724 9.8335 5.3494 20.0772

NDWI 0.7294 0.4552 2.8427 2.6689 4.5662 4.2598

SAVI 2.5223 1.6771 3.5135 4.3488 4.5442 5.2015

IBI 0.8453 0.5893 3.6801 5.1859 4.9035 11.9629

EVI 0.9158 0.7657 3.3013 4.7757 3.7533 7.2919

Perturbation analysis for Abu Dhabi revealed asymmetric responses with larger effects than in İstanbul,
reflecting the desert’s extreme thermal gradients.

For built-up indices, negative perturbations produced particularly strong cooling: NDBI reached MD =
+20.01◦C versus +5.47◦C for positive perturbations at ε = 0.1, while IBI showed +11.86◦C versus +4.90◦C.
Vegetation indices were more symmetric but still substantial; NDVI scaled strongly, with MD = +20.24◦C for
positive versus +4.21◦C for negative perturbations, suggesting vegetation enhancement provides disproportionate
cooling. Water-related indices (NDWI) showed moderate, relatively symmetric effects, ranging from +0.45◦C to
+4.65◦C.

Statistical Significance: All sensitivity analyses achieved statistical significance well below the α = 0.01
threshold, with effect sizes substantially exceeding those observed in İstanbul. The most pronounced effect was
observed for IBI ablation, yielding Cohen’s d = 8.58 (extremely large), followed by NDBI (d = 4.76) and EVI
(d = 4.11), among the largest effects typically reported in environmental remote sensing studies.

Bootstrap confidence intervals confirmed the stability of these estimates despite the extreme effect magnitudes.
IBI ablation showed a 95% CI of [35.69, 36.22]◦C, while NDBI ablation had [22.28, 22.90]◦C. The narrow intervals
relative to effect sizes indicate robust estimation across resampling iterations.



Perturbation experiments exhibited systematic scaling, with Cohen’s d reaching exceptional levels for the most
sensitive channels. For example, NDVI at ε = 0.1 produced d = 5.04 for positive perturbations, while NDBI
reached d = 4.46 for negative perturbations at the same level. Both parametric and non-parametric tests yielded
p-values near machine precision (p < 10−160) for all major effects, providing unequivocal statistical support. The
agreement across statistical tests, combined with extremely large effect sizes and narrow confidence intervals,
provides strong evidence for the causal influence of urban features on thermal patterns in desert environments.

Spatial Occlusion: Spatial occlusion analysis for Abu Dhabi revealed considerable variability in model sensi-
tivity, ranging from −9.84◦C to +8.63◦C. The overall mean sensitivity was positive and higher than in İstanbul
(mean 0.36◦C, SD 1.90◦C), consistent with the ablation results showing that most landscape features exert a net
cooling effect. Occluding a random patch is thus more likely to remove a cooling feature, increasing predicted
LST. The aggregated sensitivity map (Figure 6) highlights key areas of sensitivity, likely at interfaces between
irrigated green spaces, dense building clusters, and the surrounding desert.

Gradient Based Methods: Gradient-based methods offered visual insight into the model’s behavior in Abu
Dhabi. Grad-CAM analysis produced maps with a mean activation of 0.23, highlighting the model’s focus on key
features within the input windows. The aggregated Grad-CAM and Integrated Gradients (IG) maps (Figures 7
and 8) illustrate these areas of focus. The IG maps, with a mean attribution of 0.0013, visually confirm the
quantitative results, showing negative attributions (cooling) across all six channels, including the built-up IBI
and NDBI indices.

Figure 6: Aggregated spatial
sensitivity map for Abu Dhabi
from the 5× 5 patch occlusion

analysis.

Figure 7: Aggregated spatial
Grad-CAM sensitivity map for

Abu Dhabi.

Figure 8: Integrated Gradients maps for Abu
Dhabi in a 2× 3 grid: NDVI, NDBI, NDWI

(top) and SAVI, IBI, EVI (bottom).

3.2.3 Analysis for San Francisco

We evaluated the San Francisco test set (Ntest = 686 windows) using the same five-method sensitivity analysis
framework. The temperate, maritime-influenced climate and heterogeneous urban morphology of San Francisco
produced sensitivity patterns that differ from both İstanbul and Abu Dhabi, with several indices showing strong,
and in some cases counter-intuitive, directional effects.

Channel Ablation: The channel ablation analysis for San Francisco revealed a mixed pattern of cooling and
warming effects when spectral indices were removed, more similar to İstanbul than Abu Dhabi but with distinct
characteristics. Built-up indices demonstrated the strongest cooling effects when removed: NDBI showed the
largest impact withMD = −8.44 ◦C, indicating substantial warming influence of built surfaces in San Francisco’s
temperate climate. EVI exhibited a similarly strong cooling effect when removed (MD = −7.01 ◦C), confirming
the importance of enhanced vegetation for thermal regulation.



NDVI showed a modest cooling effect when removed (MD = −0.37 ◦C), suggesting limited sensitivity to
basic vegetation measures in this Mediterranean climate context. In contrast, water-related and soil-adjusted
vegetation indices showed warming effects when removed: NDWI contributed MD = +1.42 ◦C and SAVI con-
tributed MD = +1.24 ◦C, indicating their cooling influence. IBI demonstrated a moderate warming effect when
removed (MD = +0.87 ◦C), suggesting built-up areas identified by this index provide some cooling relative to
other urban features.

The pattern in San Francisco differs notably from both İstanbul and Abu Dhabi, with built-up indices
(NDBI) showing strong warming effects and vegetation indices (EVI) showing strong cooling effects, but with
SAVI unexpectedly contributing to warming when removed.

Perturbation analysis: We applied multiplicative perturbations c 7→ c±εc (ε ∈ {0.01, 0.05, 0.1}) and recorded
average MDs for plus/minus perturbations (Table 5).

Table 5: San Francisco — Perturbation MDs (average over test set). Positive MD = predicted temperature
increases after the perturbation.

Channel MD+0.01 MD−0.01 MD+0.05 MD−0.05 MD+0.1 MD−0.1

NDVI 1.3008 −1.2808 2.4467 −5.9379 2.1948 −1.7583

NDBI 1.8412 −7.4159 2.6524 −6.5390 2.5676 −5.2586

NDWI 0.0088 0.0587 1.1259 2.0436 2.7548 2.6315

SAVI −6.3470 1.7172 −6.3392 2.9699 −3.9819 3.2897

IBI −0.8426 0.8442 −1.9292 1.7803 −4.2471 2.2541

EVI 1.6625 −5.9562 3.0437 −6.9877 3.5853 −5.1267

Perturbation analysis revealed highly asymmetric responses across different spectral indices, with some chan-
nels showing extreme sensitivity to directional changes. Built-up indices (NDBI) exhibited strong asymme-
try: negative perturbations (reduced built-up area) consistently produced large cooling effects ranging from
MD = −7.42 ◦C at ϵ = 0.01 to MD = −5.26 ◦C at ϵ = 0.1, while positive perturbations showed modest warm-
ing effects (MD = +1.84 ◦C to +2.57 ◦C). This asymmetry suggests that reducing built-up intensity provides
disproportionately large cooling benefits in San Francisco’s climate.

SAVI demonstrated counterintuitive behavior with positive perturbations (vegetation enhancement) produc-
ing cooling effects ranging from MD = −6.35 ◦C to MD = −3.98 ◦C, while negative perturbations (vegetation
reduction) showed warming effects (MD = +1.72 ◦C to +3.29 ◦C). This pattern, opposite to conventional
expectations, may reflect complex soil-vegetation interactions in San Francisco’s Mediterranean environment.

EVI showed expected vegetation patterns with positive perturbations yielding warming effects (MD =
+1.66 ◦C to +3.59 ◦C) and negative perturbations producing cooling effects (MD = −5.96 ◦C to −5.13 ◦C).
The asymmetry suggests that vegetation loss has disproportionately large warming impacts compared to vegeta-
tion gains. Water indices (NDWI) showed minimal sensitivity at low perturbation levels but increasing symmetric
responses at higher levels, reaching MD values around +2.75 ◦C for both positive and negative perturbations at
ϵ = 0.1.

Statistical Significance: All major sensitivity effects were significant at α = 0.01, though effect sizes were
smaller than in Abu Dhabi: NDBI ablation produced Cohen’s d = −3.07 (very large) and EVI ablation d = −1.97
(large). Bootstrap CIs were stable despite the modest sample size (N = 686): NDBI 95% CI [−8.63, ,−8.25],◦ C
and EVI [−7.28, ,−6.76],◦ C, supporting robust estimation. Perturbation tests similarly returned highly signif-
icant results for most channel ε combinations. Notable effect sizes include NDBI (large negative effects for −
perturbations, e.g., d ≈ −4.12 at ε = 0.1 minus) and EVI (large negative effect sizes for some minus pertur-
bations, e.g., d ≈ −3.59 at ε = 0.1 minus). NDWI at the smallest perturbation (ε = 0.01) was not significant
(Wilcoxon p ≈ 0.286) indicating negligible sensitivity to very small NDWI changes in some contexts.



Spatial Occlusion: Spatial occlusion analysis in San Francisco revealed the most constrained sensitivity range
among all three cities, spanning from −1.88 ◦C to +0.42 ◦C (mean = −0.10 ◦C, std = 0.15 ◦C). The negative
mean (≈ −0.10,K) indicates that occluding a random patch is, on average, slightly more likely to reduce predicted
temperature — i.e., many patches contain features the model treats as warming in San Francisco, in contrast
to İstanbul and Abu Dhabi where occlusion means were positive. The relatively narrow occlusion-sensitivity
range (min ≈ −1.9,K to max ≈ +0.42,K) points to less extreme local sensitivity than Abu Dhabi, reflecting
San Francisco’s more heterogeneous but less extreme urban/thermal contrasts. At the population level, the
occlusion map (Figure 9) pinpoints the spatial locations—dense built-up corridors, large impervious surfaces,
and microclimates near water and parks—where occlusion produces the largest local impacts.

Gradient Based Methods: Grad-CAM activations are the strongest among the three cities (population mean
≈ 0.305), indicating that the model focuses on well-defined spatial structures in San Francisco when predict-
ing LST. Integrated Gradients show small raw magnitudes but, when aggregated channel-wise and spatially,
reveal that built-up (NDBI, IBI) and vegetation (EVI, NDVI) channels contribute substantially to the model’s
attributions, consistent with the ablation and perturbation results. Areas highlighted by Grad-CAM generally
correspond to occlusion hotspots and to locations where perturbations produce large MDs, providing convergent
spatial evidence of the urban elements driving the model’s predictions.

The per-channel attribution patterns (Figures 10 and 11) further reveal complex spatial relationships that
align with the mixed positive and negative effects observed in the ablation analysis.

Figure 9: Aggregated spatial
sensitivity map for San

Francisco from the 5× 5 patch
occlusion analysis.

Figure 10: Aggregated spatial
Grad-CAM sensitivity map for

San Francisco.

Figure 11: Integrated Gradients maps for San
Francisco in a 2× 3 grid: NDVI, NDBI, NDWI

(top) and SAVI, IBI, EVI (bottom).

3.3 Cross-City Synthesis and Implications for UHI Mitigation

Collectively, the three-city analysis demonstrates both consistent patterns and strong context dependence. Across
all methods vegetation signals were generally associated with cooling (e.g., İstanbul: EVI MD ≈ −2.63◦C, SAVI
MD ≈ −1.14◦C; San Francisco: EVI MD ≈ −7.01◦C), and these effects are supported by large effect sizes and
narrow bootstrap intervals. However, the magnitude and even the spectral drivers differ markedly by climate and
morphology: Abu Dhabi yielded substantially larger sensitivities (e.g., IBI ablation MD ≈ +35.97◦C, NDBI MD
≈ +22.59◦C; Cohen’s d up to ∼ 8.6), while İstanbul and San Francisco show moderate-to-large but far smaller
effects (İstanbul EVI d≈−1.75, San Francisco NDBI d≈−3.07). Spatial diagnostics further emphasize these
contrasts — mean occlusion sensitivities are positive in İstanbul (≈ +0.11◦C) and Abu Dhabi (≈ +0.36◦C),
but slightly negative in San Francisco (≈ −0.10◦C), reflecting different prevalences of cooling versus warming
features and the model’s localized attention (Grad-CAM mean activations: İstanbul ≈ 0.17, Abu Dhabi ≈ 0.23,
San Francisco ≈ 0.31). Taken together, the results show that the model is highly sensitive to vegetation and
water features, highlight strong and sometimes counter-intuitive built-environment effects in arid contexts, and
emphasize the need to tailor interventions to local climate, morphology, and spatial heterogeneity.



4. CONCLUSION

Our research developed and evaluated a deep learning framework for modeling urban heat island effects across
diverse climatic contexts, using İstanbul, San Francisco, and Abu Dhabi as case studies. The compact U-Net ar-
chitecture achieved variable performance across cities (Abu Dhabi R2 = 0.74, İstanbul R2 = 0.44, San Francisco
R2 = −0.15), highlighting both the potential and limitations of cross-regional thermal modeling. The compre-
hensive five-method sensitivity analysis framework revealed consistent cooling influences from vegetation indices
across all contexts, with effect magnitudes varying dramatically by climate—EVI removal increased tempera-
tures by 2.63 ◦C in İstanbul compared to 16.81 ◦C in Abu Dhabi, illustrating how desert environments amplify
the importance of limited vegetation. Built-up indices showed complex, context-dependent relationships, with
counterintuitive cooling effects in Abu Dhabi (IBI removal: +35.97 ◦C) possibly reflecting building shading or
thermal mass effects in extreme heat conditions. The spatial occlusion analysis revealed heterogeneous sensi-
tivity patterns that provide actionable guidance for targeted urban planning interventions, while gradient-based
explainability methods offered convergent evidence supporting the causal interpretations. Despite limitations
in cross-regional transferability, the robust statistical validation (including bootstrap confidence intervals and
effect size quantification) establishes the framework’s value for evidence-based UHI mitigation strategies. The
findings underscore the critical importance of context-specific approaches to urban climate adaptation, demon-
strating that while universal solutions remain elusive, careful analysis of local thermal dynamics can provide
actionable insights for resource-efficient mitigation strategies tailored to the unique characteristics of different
urban environments and climatic zones.
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