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Abstract

The increasing urbanization has intensified air pollution exposure,
seriously threatening public health. This study examines how vari-
ous machine learning and deep learning models can enhance the
optimization of traffic changes within an urban planning frame-
work, with a particular emphasis on air quality. Using local pollutant
data from stations located in Novi Sad (Serbia), the models estimate
emission changes from major transport infrastructure modifica-
tions. Two complementary approaches are used: (1) multi-output
regression aimed at predicting air pollutant concentrations, and
(2) multi-output classification focused on predicting the air quality
index (AQI). For daily predictions, the Long Short-Term Memory
(LSTM) model achieved the best R? = 0.5, while the Balanced
Random Forest classifier reached 0.775 balanced accuracy for AQI
classification. Finally, the most accurate models were applied to
two prospective city network scenarios projected - (1) construction
of two river bridges rerouting heavy traffic, and (2) creation of an
extended pedestrian zone downtown - to quantify the expected re-
duction in pollutant concentrations and estimate possible changes
in AQI categories. Depending on the pollutant, the results indicate
a relative daily decrease between 0.7% and 2.9% on average for
both scenarios. Although the improvement might seem small, this
reduction is obtained for 13 street segments within a 100-meter
radius around air stations, and a potential reduction for the whole
city could be more substantial. Additionally, to turn forecasts into
policy-ready evidence for traffic system decisions, we paired predic-
tive models with explainable artificial intelligence (XAI) methods.
Applying XAI methods reveals that meteorological factors, includ-
ing relative humidity, total precipitation, temperature, and wind
speed, primarily account for the predictions of developed mod-
els. Overall, the XAI methods highlight the combined influence of
temporal, spatial, and meteorological factors on AQI.
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1 Introduction and background

Rapid urbanization has significantly intensified air pollution ex-
posure, posing a significant threat to public health, particularly
affecting the respiratory and cardiovascular systems. According to
the World Health Organization (WHO), air pollution causes approx-
imately seven million premature deaths each year due to prolonged
exposure to harmful pollutants such as particulate matter (PM),
nitrogen oxides (NO,), carbon monoxide (CO), and sulphur dioxide
(SO2) [21]. Traffic-related emissions notably contribute to urban air
pollution, as combustion engines directly emit pollutants including
NOx, CO, and fine particulate matter (PM2.5, PM10), significantly
impacting urban areas [6]. Accurate air quality predictions are thus
essential for urban planners and local authorities aiming to mitigate
pollution impacts and implement effective infrastructure modifica-
tions. Cities across Europe and beyond are integrating air quality
considerations directly into urban planning initiatives such as traf-
fic re-routing, low-emission zones, or pedestrianization schemes [3].
Studies have demonstrated that targeted traffic policy interventions
can alter local air pollution dynamics and improve public health
outcomes. For instance, the implementation of Low Emission Zones
(LEZs) and congestion charging schemes in various European cities
has resulted in significant reductions in air pollution-related health
risks, especially cardiovascular diseases [1]. Similarly, in Dublin,
targeted traffic pattern changes were associated with observable
reductions in urban air pollutants, emphasizing the importance of
spatially precise traffic management strategies for reducing pollu-
tion exposure [18].

Recent advancements in air quality prediction have increasingly
utilized machine learning (ML) and deep learning methods to over-
come limitations of traditional dispersion models, particularly re-
garding data scarcity and computational intensity. [16] utilized mul-
tivariate linear regression models to evaluate the effectiveness of
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traffic restrictions in Padova, Italy, demonstrating significant corre-
lations between traffic volume reductions and decreases in NO, NO,,
and NOx levels, although limited effects on PM10 were observed.
Similarly, Wang et al. (2022) developed a prediction model com-
bining Convolutional Neural Networks (CNN) with an improved
Long Short-Term Memory (ILSTM) network, significantly enhanc-
ing predictive accuracy by effectively extracting relevant spatial
and temporal features [20]. Additionally, [18] leveraged Gaussian
Process Regression to capture the spatial variability of urban air
pollutants in Dublin, illustrating the effectiveness of ML techniques
in addressing data sparsity and spatial heterogeneity. Other stud-
ies [7, 13] have recognized the importance of traffic management
systems in enhancing citizens’ quality of life within smart city
frameworks. Smart cities leverage information services to monitor
public areas and infrastructure, which makes city services more
aware, interactive, and efficient. Additionally, these studies pro-
posed LSTM-based models for predicting Air Quality Index (AQI).
The Temporal Sliding Long Short-Term Memory Extended Model
(TS-LSTM) is proposed in [11] to predict AQI and concentrations
for the following day or month, utilizing an optimal temporal lag
to implement a sliding prediction window. Despite these advance-
ments, critical gaps persist in current methodologies. Most models
primarily focus on routine forecasts, providing limited insight into
the potential impacts of proposed urban planning interventions,
since many of them often operate as black boxes, offering minimal
interpretability regarding the specific factors influencing air quality
predictions.

Our study addresses these gaps by developing an integrated
forecasting approach tailored specifically to the city of Novi Sad,
Serbia. Novi Sad local authorities have proposed two significant
urban infrastructure scenarios for 2024: (1) construction of two
river bridges to reroute heavy traffic and (2) creation of an extended
pedestrian zone downtown. Our study aims to contribute to un-
derstanding how these urban infrastructural changes would affect
concentrations of pollutants and overall air quality. We leverage a
comprehensive 15-year historical air quality dataset, integrating
pollutant measurements (SO, NO,, CO, NO, NO,), ERA5 meteoro-
logical data, and graph-based road network metrics (Space Syntax).
To estimate pollutant concentrations and air quality index (AQI)
categories under these two scenarios, machine learning models are
trained in two frameworks: multi-output regression and multiclass
classification. Additionally, to convert forecasts into policy-ready
evidence for traffic management decisions, we pair predictive mod-
els with explainable artificial intelligence (XAI) methods. Our find-
ings contribute to optimizing the city’s traffic network by providing
robust support for urban planning decision-making processes. By
using SHAP, we aim to determine the most important factors be-
hind the decision-making process of complex black-box models in
both frameworks. In recent years, many researchers have pointed
out the lack of explanation methods for deep learning time series
forecasting models [17]. SHAP method has been used in traffic [14]
and pedestrian [8] accident analysis to obtain variable importance
of different classification methods. In the study [22], it is shown that
RF in synergy with SHAP can help in revealing the main factors
influencing air pollutant measurements.

The remainder of the paper is structured as follows. A compre-
hensive description of the data is presented in the next section.

Kopanja et al.

The study design and methods used for multi-output regression
and multi-class classification tasks are described in Section 3. The
results of the analysis are presented and discussed in Section 4.
Finally, the last section concludes the study with a summary of
the contributions and limitations of this study, as well as future
directions.

2 Data
2.1 Study area

The focus area of the case study is Novi Sad, Serbia (illustrated on
Figure 1). The city of Novi Sad is located in the south of the Pan-
nonian Plain at an elevation of 80-83 meters and covers an area of
around 702, 7km?. The city is characterized by a temperate climate
(by Koppen climate classification) and is exposed to a large amount
of dust and strong winds, such as Kosava, which can redistribute
pollutants. The city area suffers from a high concentration of pollu-
tants due to more intensive traffic, as well as other human activities,
such as burning coal in industrial zones and households. For that
reason, local authorities proposed two infrastructure plans. The
first one, named the Novi Sad bypass, assumes building two new
bridges as part of the city’s outer ring, as visualized in Figure 1. The
bypass is expected to relocate a significant amount of traffic flow
from the west towards the east of the city and vice versa. The sec-
ond plan is related to Petrovaradin, the oldest town within the Novi
Sad area. To preserve the historical core of Petrovaradin, the main
street (colored yellow on Figure 1) is planned to be closed to general
traffic, while only public transport and delivery vehicles will still be
allowed to enter. The street is a vital link between Petrovaradin and
Novi Sad, and its closure could severely worsen traffic congestion.
Therefore, evaluating this scenario is quite crucial for prospective
stakeholders. To support effective urban planning, estimation of the
potential reduction of pollutant emissions resulting from changes
in transport infrastructure can help in the decision-making process
in urban planning.
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Figure 1: Study area and locations of air quality stations, A
(north) and B (south). Red lines represent all street segments
available in the data, and blue lines represent street segments
within a 100-meter radius around the air quality station.
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2.2 Air quality data

The Serbian Environmental Protection Agency (SEPA) operates
two automatic air quality monitoring stations inside the study area
(illustrated in Figure 1). Station A in the northern part of the city is
located nearer the industrial zone and crossroads with heavy traffic.
In contrast, station B in the southern part of the city is located
in a park, not directly next to the main streets. Each observation
contains the timestamp, the station identifier, station coordinates
(latitude and longitude), and measures hourly mass concentrations
of sulphur dioxide (SO;), nitrogen dioxide (NO;), nitrogen monox-
ide (NO), total nitrogen oxides (NO,) and carbon monoxide (CO).
The SO;, NO2, NO, and NO, are expressed in pg m~3, whereas CO
is provided in mgm~3. The raw files also contain air pressure P
(mb), temperature ¢ (°C) and relative humidity Rh (%), but these
three fields are missing in roughly 60% of records and were there-
fore excluded from modeling. Although SEPA also reports hourly
concentrations for ozone (Os), fine particulate matter (PM; s), and
inhalable particulate matter (PM;), these variables suffer from sub-
stantial data gaps: only 43% of records for O; and PM, s, and 44%
for PMj, contain valid values. Given this high amount of missing
values, these three pollutants were excluded from further analysis
and model input.

To estimate the quality of air using SEPA data, categorically and
numerically, the AQI parameter was introduced. In general, the
standard set of pollutants used in Air Quality Index (AQI) calcu-
lation includes SO;, NO,, CO, PM; 5PMj4, and Os. Due to missing
data for particulate matter and ozone in our case, we limited the
AQI computation to the three pollutants with high coverage: SO,,
NO,, and CO. The AQI used in our classification models was com-
puted following the conventional breakpoint method. First, for
each pollutant, a set of six concentration intervals [Cyin, Cmax] and
corresponding index ranges [Inin, Imax] are defined. If a measured
concentration C falls within one of these intervals, its sub-index I
is obtained by linear interpolation (Equation (1)):

Imax - Imin
I = ———(C — Chpin) + Inin- 1
Cmax - Cmin ( mm) i ( )
Once the sub-indices for all pollutants are calculated, the overall
AQI is taken as the maximum sub-index (Equation (2)):

AQI = max{lj, I, ... I,}. 2)

Records for which one or more sub-indices could not be com-
puted (due to missing pollutant concentration data) were assigned
a missing AQI and excluded from classification. To convert the
continuous AQI values into categorical labels, we initially used the
standard six-category scale [19], which is redefined to four-class
scheme shown in Table 1 due to severe class imbalance.

Table 1: AQI category definitions used in this study

Category  AQI Description

AQIy 0 < AQI <50 Good

AQIy 51 < AQI < 100 Moderate

AQI3 101 < AQI < 150  Unbhealthy for Sensitive Groups
AQly AQI > 150 Unhealthy or Worse
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2.3 Street network data

Space syntax techniques [12] and QGIS software [15] are used to
analyze spatial layouts and human activity patterns in the study
area. Using Space Syntax, the road geometry is decomposed into
individual segments, meaning a single road in the original network
may correspond to multiple segments in the processed network.
The obtained network of Novi Sad for 2024 is shown in Figure 1. The
network is analyzed using adapted graph-based metrics, such as
betweenness centrality (choice), closeness centrality (integration)
and others. The described features are calculated for each street
segment; however, based on the locations of two air quality stations,
only 13 street segments within a 100-meter radius (illustrated as
blue circles around air quality stations on Figure 1) around the sta-
tions are considered relevant for measurements obtained on these
stations. That is, the dataset includes 8 street segments located near
station A and 5 segments near station B. The 100-meter radius is
selected because the distance between air quality monitoring sta-
tions and roads can significantly influence the relationship between
traffic and measured pollutant concentrations.

2.4 Meteorological data

The meteorological data, such as precipitation, wind and temper-
ature, play significant roles in pollution formation. Therefore, we
included meteorological parameters in our datasets. ERA5 is pro-
duced by the Copernicus Climate Change Service (C3S) at the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWEF).
ERAS provides hourly estimates of a large number of atmospheric,
land and oceanic climate variables. Variables used in our case study
are 10m u-component of wind and 10m v-component of wind, repre-
senting horizontal speed of air moving towards the east and north,
respectively, at a height of ten metres above the surface of the
Earth. Furthermore, total precipitation, 2m dewpoint temperature
(d2m), and 2m temperature (t2m) were also considered in our study.
Relative humidity Rh (%) was recalculated from the t2m and d2m
parameters, and replaces the incomplete SEPA Rh measurements.
Daily values are computed by averaging all variables except to-
tal precipitation, which is summed from hourly data. These daily
values are then aggregated into monthly data using mean values.
Future work may exclude rainy days, as precipitation removes at-
mospheric particles, potentially introducing confounding effects in
predictive modeling.

2.5 Datasets

From a spatial perspective, each datasets contains 13 street seg-
ments described with traffic and meteorological features, where
the letter can be observed on a hourly, daily or monthly temporal
scale. Historical data of in-situ measurements of multiple airborne
pollutants, including SO2, NO2, CO, NO, and NOX, are accessible
spanning 15 years, up to 2024. The only exception is the year 2022,
for which pollutant data is not available. Descriptive statistic for
daily datasets shows varying numbers of pollutant measurements
within the same year range due to data scarcity. Some pollutants
are missing for several months or entire years at a certain station.
Average concentrations and standard deviations also vary across
subsets and pollutants. For training, validation, and test set cre-
ation, a 10-4-1 schema is used to ensure sufficient training data
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and a sizable validation set. Training data spans 2009-2018, while
validation covers 2019, 2020, 2021, and 2023. For the test set, only
one year, 2024, is used, to enable comparison with two additional
scenarios related to urban changes in the city: (1) construction of
two river bridges, rerouting heavy traffic and (2) creation of an
extended pedestrian zone downtown.

Our modeling pipeline starts with integrating and cleaning het-
erogeneous data sources into unified tabular datasets. Hourly read-
ings from two SEPA air quality stations were merged with street-
segment attributes from Space Syntax and meteorological data
from ERAS5. Negative pollutant values were removed as physically
invalid, and extreme outliers beyond realistic thresholds were ex-
cluded. Two dataset versions were created: one retaining samples
with missing pollutant values, and another excluding them to as-
sess their impact. Missing numerical inputs were imputed with
means, and categorical features were one-hot encoded. Pollutant
measurements were scaled consistently to address differences in
scale. Temporal features such as year, month, weekday, and week-
end indicators were added to capture seasonal and cyclical patterns.
To capture diurnal patterns more explicitly, we also created three
intraday subdivisions by splitting each 24-hour day into 3, 6, and 8
equal-length parts. This allowed the model to learn differences in
air quality trends throughout the day.

The AQI class labels in the training, validation, and test datasets
are not represented equally, a situation known as class imbalance.
This imbalance can disrupt the process of generating machine learn-
ing classifiers, causing them to be biased towards the majority class.
As a result, these classifiers may struggle to identify and accurately
predict unhealthy levels in the minority class, which are typically of
primary interest. The class imbalance in hourly and daily AQI dis-
tribution across training, validation and test sets could be observed
in Figure 2.

AQ distribution for training AQ distribution for validation AQ distribution for testing
dataset dataset dataset

0.80% % 3 4
2.80% o D58% 005% 6.80%  0-40%

Hourly

mAQl ®AQ2 WAQI3 WAQI4 mAQIL WAQ2 WAQ3 WAQM4 mAQIL mAQR2 mAQI3

2055 024% 272%  033% 161%  0.01%

12.63%

Daily

mAQIL ®AQ2 WAQ3 WAQI4 mAQIL ®AQ2 mAQI3 mAQIL mAQ2 mAQI3

Figure 2: Hourly and daily distributions of AQI classes for
training, validation, and testing datasets

3 Methodology

This study uses two complementary approaches for air quality pre-
diction: (1) multi-output regression to estimate continuous pollutant
levels, and (2) multi-class classification to predict AQI categories. A
recurrent neural network was used for the spatio-temporal regres-
sion task, while various classifiers were applied to the classification
problem.
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3.1 Multi-output regression framework

In the multi-output regression framework, we are aiming to predict
measurements of pollutants using a single model instead of having
multiple models for each pollutant. Given the spatio-temporal na-
ture of the data, long short-term memory (LSTM) networks [4] were
used for their ability to capture long-term dependencies. Initial ex-
periments with linear, polynomial, decision tree, and random forest
regressors on daily and monthly datasets (Section 2.5) yielded poor
performance (R? < 0.2), even with hyperparameter tuning, thereby
highlighting the limitations of traditional models in handling high-
dimensional and noisy sequential data. Accordingly, a deep learning
network model based on LSTM layers was constructed, and a spatio-
temporal modelling approach was used due to the temporal and
spatial components present in the datasets. Input data sequences
for the LSTM are constructed by preserving the spatial distinction
between street segments, thereby enabling the model to capture
both temporal dependencies and street segment-specific (spatial)
characteristics. To account for time dependency and incorporate
seasonal factors, the models were trained using a sliding window
ranging from 7 to 30 days (with a 7-day increment). Additionally,
shorter windows from 1 to 5 are also evaluated. The LSTM model
is trained from all street segments jointly, where each sample is
specified by the time window from a street segment, to learn a
model with generalization ability across segments.

Numerous experiments have been conducted to identify the
optimal hyperparameters for constructing the best LSTM structure.
This has resulted in a network architecture featuring three main
components. It begins with an input layer, followed by three hidden
LSTM layers: the first and second each contain 128 units, while
the third hidden LSTM layer consists of 64 units. The network is
optimized using Adam algorithm, with mean absolute error (MAE)
as the objective function due to its robustness on outliers (masked
MAE loss function was used for dataset with missing values). The
network is trained in 100 epochs with early stopping to prevent
overfitting. The training is stopped if there is no improvement in
MAE on the validation set after 10 epochs. The 3-layer stacked
LSTM model is created, where each LSTM building block contains
normalization layer and regularization layer with 0.2 dropout rate.

3.2 Multi-class classification framework

The multi-class classification framework addressed development of
models on a granular classification scale involving four AQI cate-
gories. Initial experimentation with a standard Random Forest clas-
sifier provided baseline performance; however, the class imbalance
issue, particularly in rare but critical high-pollution classes, per-
sisted. To overcome this, we employed two specialized approaches:
a multiclass Light GBM model [5] and a Balanced Random Forest
classifier [2]. LightGBM has inherent capability to handle mild
imbalance through class-weight adjustments. Balanced Random
Forest method resamples training data at each bootstrap iteration
to maintain class balance, thereby reducing bias toward majority
categories without resorting to external oversampling.

All classification models were evaluated across multiple tempo-
ral resolutions, including hourly, daily, and intraday segments (3,
6, and 8 equal parts per day), to explore whether finer temporal
segmentation could enhance predictive accuracy, particularly for
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rapid shifts in air quality. The temporal split used mirrored that
of the regression framework, with training data from before 2019,
validation from 2019-2021 and 2023, and testing for the year 2024.
Model hyperparameters were tuned using grid search guided by
validation performance. For LightGBM, we optimized tree depth
and learning rate, while Balanced Random Forest was optimized for
number of estimators and minimum leaf size to improve minority-
class sensitivity. Model performance was assessed using balanced
accuracy (BA), which equally weighs recall across all classes.

Finally, after a comprehensive evaluation on our validation and
test splits, the Balanced Random Forest classifier emerged as the
most reliable model. We therefore selected this model to generate
AQI forecasts for the year 2024 for two urban development scenar-
ios: (1) scenario with two additional river bridges rerouting heavy
traffic and (2) scenario with pedestrianization of zone downtown -
to quantitatively estimate potential changes in AQI categories and
their implications for urban planning and public health.

3.3 SHAP method

To enhance the interpretability of the most accurate models we
employed SHapley Additive exPlanations (SHAP) [10] to identify
which input features most strongly influenced AQI class predictions.
For the Balanced Random Forest, as the best performer for the multi-
class classification task and overall the best choice in framework,
we used Tree SHAP, a model-specific XAI method for the exact
calculation of SHAP values [9]. By aggregating the values, class-
wise feature attributions are obtained on the 2024 test dataset. The
SHAP values were computed for each AQI class, and both bar plots,
showing global feature importance, and beeswarm plots, showing
distribution of SHAP values per feature, were generated. This anal-
ysis was produced for each of the four AQI categories, allowing us
to inspect the relative importance and effect direction of features
such as temporal features, weather conditions, and street-segment
descriptors.

4 Results and dicussion

4.1 Multi-output regression results

In the multi-output regression framework, the network is evalu-
ated using mean squared error (MSE), root mean squared error
(RMSE) and coefficient of determination (R?). The performance of
LSTM models was evaluated on two temporal resolutions—daily
and monthly—using both the full and a filtered dataset.

For the daily scale, the 3-layered LSTM model (with a 7-day win-
dow) achieved moderate predictive performance, with slightly im-
proved performance after removing missing values (filtered dataset).
The visual inspection of results obtained from datasets with missing
measurements (full dataset) for some pollutants indicated that the
LSTM model produces predictions (mean values) that are overly
smooth for those cases where true values are available. Overall,
removing data with missing pollutant concentrations consistently
led to improved performance across all metrics for both temporal
scales, where the LSTM model benefited considerably on coarser
monthly temporal resolution. Furthermore, the LSTM model per-
forms better on daily compared to monthly data, probably due to
much larger size of data, which is need for deep neural network
models.
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Table 2: Performance evaluation of LSTM models for daily
and monthly scale.

Full dataset

MAE | MSE | RMSE R2

8,606 289,758 17,02228 0,483

daily Filtered dataset

MAE MSE RMSE R2

7,44 272,466 16,50654 0,508

Full dataset

MAE | MSE | RMSE R2

11,293 311,667 17,65409 0,181

monthly Filtered dataset

MAE | MSE | RMSE | R2

8,198 171,932 13,11228 0,548

4.2 Multi-class classification results

To predict AQI categories across four classes, we compared the
performance of Balanced Random Forest (BRF) and Light Gradient
Boosting Machine (LGBM) classifiers.

Table 3: Balanced accuracy for multi-class AQI classification

Balanced accuracy

Temporal resolution BRF LGBM
Daily 0.7829 0.5000
8-hour windows 0.8120 0.5423
4-hour windows 0.5221 0.3650
3-hour windows 0.5137 0.3996
Hourly 0.5200 0.4914

As shown in Table 3, the BRF consistently outperformed LGBM
across all resolutions, particularly on aggregated data. The best
performance was observed for BRF on the 8-hour windows dataset
with a BA of 0.812, closely followed by the daily model (0.7829). In
contrast, LGBM performance remained considerably lower, with its
best result of 0.542 also observed on the 8-hour windows dataset.
This suggests that BRF is more robust to class imbalance and better
captures AQI dynamics. Lower performance for both models was
observed on finer-grained resolutions (e.g., hourly), likely due to
high intra-day variability and smaller effective sample sizes per
class, which challenge stable pattern learning in minority AQI
categories.

To quantify the expected reduction in pollutant concentrations
and estimate possible changes in AQI categories, the best models
were applied to two scenarios: (1) construction of two river bridges
rerouting heavy traffic and (2) creation of an extended pedestrian
zone downtown. The results are shown in Table 4. Depending on
the pollutant, the results indicate a relative daily decrease between
0.7% and 2.9% on average for both scenarios. With classification
model, we estimated daily decrease from 3% up to 4.5%.



ICAAI 2025, November 14-16, 2025, Manchester, UK

Table 4: Analysis of the impact of two urban infrastructure
changes using the best models from both proposed frame-
works.

Multi-output regression | Multi-class classification

Reduction (%)  bridges | pedestrain zone | Reduction (%) | bridges | pedestrain zone
502 034 0,1 | AQI 3,15 4,46
NO2 2,34 0,73
NOX 3,56 1,07
CcO 1,73 0,5
NO 3,97 1,16
Average 2,9 0,712

4.3 Explanation framework

By using SHAP we tried to identify factors that affect the pollutant
concentration and AQI level. Ultimately, our goal in developing an
interpretable wrapper for both frameworks was to assist policymak-
ers in creating urban plans that would positively impact air quality.
Figure 3 shows a stacked bar plot where global attributions can be
observed as well as per-class feature importance. Globally, the most
important feature is relative humidity, followed by month and SS
node count. Regarding meteorological parameters, the most influen-
tial variables, except relative humidity, are total precipitation and
wind speed. Additionally, per-class analysis shows that the most
important feature for the fourth AQI class is month, highlighting
the significance of temporal components for the model to learn
specific characteristics related to the most hazardous AQI category.
From the aspect of infrastructural changes, the number of street
segments along routes from a selected segment to others related
to the traffic network is essential for predictions of AQI; and AQI;
classes.

Global explanation for BRF model
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Figure 3: Explanation for Balanced Random Forest model for
daily scale.

The typical bar feature importance plots do not tell whether some
feature has a positive or negative effect on the model’s decision.
Therefore, to obtain this information, shap values are shown for
each class separately on beeswarm plots.

The SHAP beeswarm plots of the BRF model’s predictions show
that the most influential features are month, relative humidity, and
total precipitation, with smaller relative humidity generally asso-
ciated with lower AQI values, suggesting that smaller humidity
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Global explanation for BRF model AQI_2
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Figure 4: Explanation plot for AQI,.

correlate with better air quality. Environmental variables such as
precipitation, wind speed, and temperature also have notable im-
pacts, where high precipitation and wind speed tend to have a
positive impact on AQI, while high values of temperature tend
to have an adverse effect on AQIL The month feature reveals sea-
sonal patterns, with certain months contributing to higher pollution
levels. Other features like v10, t2m, and SS node count 2km show
moderate effects. Overall, the model highlights the combined influ-
ence of temporal, spatial, and meteorological factors on air quality.
Similar conclusions can be drawn from Figure 5 obtained for LSTM
model in multi-output regression framework.
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Figure 5: Explanation for LSTM model for daily scale (filtered
dataset).

5 Concluding remarks

This study demonstrates the potential of machine learning and deep
learning models to support urban planning decisions to improve
air quality. By leveraging 15 years of historical data collected from
various heterogeneous sources, including traffic network infrastruc-
ture, meteorological, and pollutant concentrations from the city of
Novi Sad, Serbia, the models effectively captured patterns in pollu-
tant concentrations and air quality index classifications. The LSTM
model achieved the highest performance in daily-scale pollutant
prediction, while the Balanced Random Forest classifier yielded
the best results for AQI classification. These models were further
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applied to simulate the impact of proposed urban infrastructure
changes, projecting average daily reductions in pollutant levels
between 0.7% and 2.9% in affected areas. Although modest, these
results highlight the potential of Al-driven solutions to guide urban
socio-economic activities and promote sustainable urban develop-
ment. Importantly, integrating the SHAP method as an explanation
tool provided insights into key contributing factors, such as precip-
itation, temperature, and wind speed, enhancing the transparency
and policy relevance of the findings. However, the results indicate
that data sources used may not be sufficient for creating effective
predictive models, and other factors such as traffic flows should be
considered. Overall, the approach offers a valuable framework for
evidence-based decision-making in sustainable urban management.
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